• Journal of Semiconductors
  • Vol. 42, Issue 12, 122901 (2021)
Uma Devi Godavarti1, P. Nagaraju1, Vijayakumar Yelsani2, Yamuna Pushukuri3, P. S. Reddy4, and Madhavaprasad Dasari5
Author Affiliations
  • 1Nanosensor Research Laboratory, Department of Physics, CMR Technical Campus, Medchal, Hyderabad, Telangana 501401, India
  • 2Department of Physics, Anurag University, Hyderabad, Telangana 500088, India
  • 3Department of Physics, Mallareddy Engineering College (Autonomous), Dulapally, Hyderabad 500100, India
  • 4Department of Applied Sciences, NIT Goa, Goa 403401, India
  • 5Department of Physics, Gitam University, Visakhapatnam (A. P.) 530045, India
  • show less
    DOI: 10.1088/1674-4926/42/12/122901 Cite this Article
    Uma Devi Godavarti, P. Nagaraju, Vijayakumar Yelsani, Yamuna Pushukuri, P. S. Reddy, Madhavaprasad Dasari. Synthesis and characterization of ZnS-based quantum dots to trace low concentration of ammonia[J]. Journal of Semiconductors, 2021, 42(12): 122901 Copy Citation Text show less
    References

    [1] G Y Fan, C Y Wang, J Y Fang. Solution-based synthesis of III-V quantum dots and their applications in gas sensing and bio-imaging. Nano Today, 9, 69(2014).

    [2] D H Xiang, Y B Zhu, Z J He et al. A simple one-step synthesis of ZnS nanoparticles via salt-alkali-composited-mediated method and investigation on their comparative photocatalytic activity. Mater Res Bull, 48, 188(2013).

    [3] X S Fang, T Y Zhai, U K Gautam et al. ZnS nanostructures: From synthesis to applications. Prog Mater Sci, 56, 175(2011).

    [4] H Liu, L F Hu, K Watanabe et al. Cathodoluminescence modulation of ZnS nanostructures by morphology, doping, and temperature. Adv Funct Mater, 23, 3701(2013).

    [5] X J Xu, S Y Li, J X Chen et al. Design principles and material engineering of ZnS for optoelectronic devices and catalysis. Adv Funct Mater, 28, 1802029(2018).

    [6] X S Fang, U K Gautam, Y Bando et al. Multiangular branched ZnS nanostructures with needle-shaped tips: potential luminescent and field-emitter nanomaterial. J Phys Chem C, 112, 4735(2008).

    [7] X S Fang, Y Bando, M Y Liao et al. Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv Mater, 21, 2034(2009).

    [8] M Jadraque, A B Evtushenko, D Ávila-Brande et al. Co-doped ZnS clusters and nanostructures produced by pulsed laser ablation. J Phys Chem C, 117, 5416(2013).

    [9] B Poornaprakash, D Amaranatha Reddy, G Murali et al. Composition dependent room temperature ferromagnetism and PL intensity of cobalt doped ZnS nanoparticles. J Alloys Compd, 577, 79(2013).

    [10] W J Fang, Y S Liu, B Z Guo et al. Room temperature ferromagnetism and cooling effect in dilute Co-doped ZnS nanoparticles with zinc blende structure. J Alloys Compd, 584, 240(2014).

    [11] L J Tang, G F Huang, Y Tian et al. Efficient ultraviolet emission of ZnS nanospheres: Co doping enhancement. Mater Lett, 100, 237(2013).

    [12] M S Akhtar, M A Malik, S Riaz et al. Optimising conditions for the growth of nanocrystalline ZnS thin films from acidic chemical baths. Mater Sci Semicond Process, 30, 292(2015).

    [13] Q T Hou, K Chen, H G Zhang et al. Magnetic properties of co doped ZnS diluted magnetic semiconductor. J Phys: Conf Ser, 430, 012076(2013).

    [14] L Zhang, D Z Qin, G R Yangand et al. The investigation on synthesis and optical properties of ZnS:Co nanocrystals by using hydrothermal method. Chalcog Lett, 9, 93(2012).

    [15] L Y Liu, L Yang, Y T Pu et al. Optical properties of water-soluble Co2+:ZnS semiconductor nanocrystals synthesized by a hydrothermal process. Mater Lett, 66, 121(2012).

    [16] X B Chen, N Yang, X F Liu et al. Structure dependent photoluminescence and magnetic properties of Co:ZnS nanostructures. Phys Scr, 88, 035703(2013).

    [17] M A Ehsan, T A N Peiris, K G U Wijayantha et al. Surface morphological and photoelectrochemical studies of ZnS thin films developed from single source precursors by aerosol assisted chemical vapour deposition. Thin Solid Films, 540, 1(2013).

    [18] H Sullivan, J D Parish, P Thongchai et al. Aerosol-assisted chemical vapor deposition of ZnS from thioureide single source precursors. Inorg Chem, 58, 2784(2019).

    [19] I P Parkin, L S Price, T G Hibbert et al. The first single source deposition of tin sulfide coatings on glass: Aerosol-assisted chemical vapour deposition using [Sn(SCH2CH2S)2]. J Mater Chem, 11, 1486(2001).

    [20] A A Memon, M Afzaal, M A Malik et al. The N-alkyldithiocarbamato complexes [M(S2CNHR)2] (M = Cd(ii) Zn(ii); R = C2H5, C4H9, C6H13, C12H25); their synthesis, thermal decomposition and use to prepare of nanoparticles and nanorods of CdS. Dalton Trans, 37, 4499(2006).

    [21]

    [22] B Timmer, W Olthuis, A van den Berg. Ammonia sensors and their applications—a review. Sens Actuat B, 107, 666(2005).

    [23] D J Binks, S P Bant, D P West et al. CdSe/CdS core/shell quantum dots as sensitizer of a photorefractive polymer composite. J Mod Opt, 50, 299(2003).

    [24] C Q Nguyen, A Adeogun, M Afzaal et al. Metal complexes of selenophosphinates from reactions with (R2PSe)2Se: [M(R2PSe2)n] (M = ZnII, CdII, PbII, InIII, GaIII, CuI, BiIII, NiII; R = iPr, Ph) and [MoV2O2Se2(Se2PiPr2)2. Chem Commun, 2182(2006).

    [25] A Derbali, H Saidi, A Attaf et al. Solution flow rate influence on ZnS thin films properties grown by ultrasonic spray for optoelectronic application. J Semicond, 39, 093001(2018).

    [26] A Panneerselvam, C Q Nguyen, M A Malik et al. The CVD of silver selenide films from dichalcogenophosphinato and imidodichalcogenodiphosphinatosilver(I) single-source precursors. J Mater Chem, 19, 419(2009).

    [27] S Singhal, A K Chawla, H O Gupta et al. Influence of cobalt doping on the physical properties of Zn0.9Cd0.1S nanoparticles. Nanoscale Res Lett, 5, 323(2009).

    [28] J K Salem, T M Hammad, S Kuhn et al. Structural and optical properties of Co-doped ZnS nanoparticles synthesized by a capping agent. J Mater Sci: Mater Electron, 25, 2177(2014).

    [29] P M Sarte, R A Cowley, E E Rodriguez et al. Disentangling orbital and spin exchange interactions for Co2+ on a rocksalt lattice. Phys Rev B, 98, 024415(2018).

    [30] A M Yang, Y H Sheng, M A Farid et al. Copper doped EuMnO3: Synthesis, structure and magnetic properties. RSC Adv, 6, 13928(2016).

    [31] P Nagaraju, Y Vijayakumar, M V Ramana Reddy. Room-temperature BTEX sensing characterization of nanostructured ZnO thin films. J Asian Ceram Soc, 7, 141(2019).

    [32] N K Abbas, K T Al-Rasoul, Z J Shanan. New method of preparation ZnS nano size at low pH. Int J Electrochem Sci, 8, 3049(2013).

    [33] S Kumar, P Mandal, A Singh et al. Magnetization properties of Co incorporated ZnS nanocrystals synthesized at low temperature via chemical route. J Alloys Compd, 830, 154640(2020).

    [34] P Nagaraju, Y Vijayakumar, D M Phase et al. Microstructural, optical and gas sensing characterization of laser ablated nanostructured ceria thin films. J Mater Sci: Mater Electron, 27, 651(2016).

    [35] G Ghosh, M Kanti Naskar, A Patra et al. Synthesis and characterization of PVP-encapsulated ZnS nanoparticles. Opt Mater, 28, 1047(2006).

    [36] B S Rema Devi, R Raveendran, A V Vaidyan. Synthesis and characterization of Mn2+-doped ZnS nanoparticles. Pramana, 68, 679(2007).

    [37] G Manjunath, R V Vardhan, L L Praveen et al. Room-temperature detection of ammonia and formaldehyde gases by LaxBa1−xSnO3−δ (x = 0 and 0.05) screen printed sensors: Effect of ceria and ruthenate sensitization. Appl Phys A, 127, 116(2021).

    [38] U Godavarti, V D Mote, M V R Reddy et al. Precipitated cobalt doped ZnO nanoparticles with enhanced low temperature xylene sensing properties. Phys B, 553, 151(2019).

    [39] P Bhat, N K S K, P Nagaraju. Synthesis and characterization of ZnO-MWCNT nanocomposites for 1-butanol sensing application at room temperature. Phys B, 570, 139(2019).

    [40] Y L Liu, L L Wang, H R Wang et al. Highly sensitive and selective ammonia gas sensors based on PbS quantum dots/TiO2 nanotube arrays at room temperature. Sens Actuators B, 236, 529(2016).

    [41] Z P Li, Q Q Zhao, W L Fan et al. Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection. Nanoscale, 3, 1646(2011).

    [42] Z G Chen, J Zou, G Liu et al. Silicon-induced oriented ZnS nanobelts for hydrogen sensitivity. Nanotechnology, 19, 055710(2008).

    [43] Y G Liu, P Feng, X Y Xue et al. Room-temperature oxygen sensitivity of ZnS nanobelts. Appl Phys Lett, 90, 042109(2007).

    [44] X W Liu, F Y Wang, F Zhen et al. In situ growth of Au nanoparticles on the surfaces of Cu2O nanocubes for chemical sensors with enhanced performance. RSC Adv, 2, 7647(2012).

    [45] M Batzill, U Diebold. Surface studies of gas sensing metal oxides. Phys Chem Chem Phys, 9, 2307(2007).

    [46] X F Wang, Z Xie, H T Huang et al. Gas sensors, thermistor and photodetector based on ZnS nanowires. J Mater Chem, 22, 6845(2012).

    [47] S Park, S An, H Ko et al. Synthesis, structure, and UV-enhanced gas sensing properties of Au-functionalized ZnS nanowires. Sens Actuators B, 188, 1270(2013).

    [48] S Hussain, T M Liu, M S Javed et al. Highly reactive 0D ZnS nanospheres and nanoparticles for formaldehyde gas-sensing properties. Sens Actuators B, 239, 1243(2017).

    [49] L P Zhang, R Dong, Z Y Zhu et al. Au nanoparticles decorated ZnS hollow spheres for highly improved gas sensor performances. Sens Actuators B, 245, 112(2017).

    [50] G K Mani, J B B Rayappan. Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films. Appl Surf Sci, 311, 405(2014).

    [51] V S Kalyamwar. TiO2 modified ZnO thick film resistors as ammonia gas sensors. Adv Mater Lett, 4, 895(2013).

    Uma Devi Godavarti, P. Nagaraju, Vijayakumar Yelsani, Yamuna Pushukuri, P. S. Reddy, Madhavaprasad Dasari. Synthesis and characterization of ZnS-based quantum dots to trace low concentration of ammonia[J]. Journal of Semiconductors, 2021, 42(12): 122901
    Download Citation