• Opto-Electronic Engineering
  • Vol. 44, Issue 2, 140 (2017)
[in Chinese]*, [in Chinese], [in Chinese], [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.02.002.1 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Advances of plasmonic nanolasers[J]. Opto-Electronic Engineering, 2017, 44(2): 140 Copy Citation Text show less
    References

    [1] Maier S A. Plasmonics: fundamentals and applications[M]. New York: Springer, 2007.

    [2] Samuel I D W, Turnbull G A. Organic semiconductor lasers[J]. Chemical Reviews, 2007, 107(4): 1272-1295.

    [4] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

    [5] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413.

    [6] Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 2009, 461(7264): 629-632.

    [7] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

    [8] Zhao Qing, Liang Gaofeng, Wang Changtao, et al. High resolution photolithography with sub-wavelength grating[J]. Applied Physics A, 2014, 115(1): 69-73.

    [9] Liang Gaofeng, Zhao Qing, Wang Changtao. Super-resolution imaging photolithography with subwavelength grating[C]. Proceedings of Asia-Pacific Conference on Near-Field Optics, 2013.

    [10] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899.

    [11] Chang S W, Chuang S L. Fundamental formulation for plas-monic nanolasers[J]. IEEE Journal of Quantum Electronics, 2009, 45(8): 1014-1023.

    [12] Zia R, Selker M D, Catrysse P B, et al. Geometries and materials for subwavelength surface plasmon modes[J]. Journal of the Optical Society of America A, 2004, 21(12): 2442-2446.

    [13] Ding K, Hill M T, Liu Z C, et al. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature[J]. Optics Express, 2013, 21(4): 4728-4733.

    [14] Duan X F, Huang Y, Agarwal R, et al. Single-nanowire elec-trically driven lasers[J]. Nature, 2003, 421(6920): 241-245.

    [15] Zhou W, Dridi M, Suh J Y, et al. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature Nanotech-nology, 2013, 8(7): 506-511.

    [16] Yu K, Lakhani A, Wu M C. Subwavelength metal-optic semi-conductor nanopatch lasers[J]. Optics Express, 2010, 18(9): 8790-8799.

    [17] Lu C Y, Chang S W, Chuang S L, et al. Low thermal impedance of substrate-free metal cavity surface-emitting microlasers[J]. IEEE Photonics Technology Letters, 2011, 23(15): 1031-1033.

    [18] Hill M T, Oei Y S, Smalbrugge B, et al. Lasing in metallic-coated nanocavities[J]. Nature Photonics, 2007, 1(10): 589-594.

    [19] Bian Y S, Zheng Z, Liu Y, et al. Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ul-tra-deep-subwavelength mode confinement[J]. Optics Express, 2011, 19(23): 22417-22422.

    [20] Bian Yusheng, Zheng Zheng, Liu Ya, et al. Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic wave-guides[J]. IEEE Photonics Technology Letters, 2011, 23(13): 884-886.

    [21] Lu C Y, Chang S W, Chuang S L, et al. Metal-cavity sur-face-emitting microlaser at room temperature[J]. Applied Physics Letters, 2010, 96(25): 251101.

    [22] Dong L F, Jiao J, Tuggle D W, et al. ZnO nanowires formed on tungsten substrates and their electron field emission proper-ties[J]. Applied Physics Letters, 2003, 82(7): 1096-1098.

    [23] Yu W D, Li X M, Gao X D. Self-catalytic synthesis and photo-luminescence of ZnO nanostructures on ZnO nanocrystal substrates[J]. Applied Physics Letters, 2004, 84(14): 2658-2660.

    [24] Nezhad M P, Simic A, Bondarenko O, et al. Room-temperature subwavelength metallo-dielectric lasers[J]. Nature Photonics, 2010, 4(6): 395-399.

    [25] Ding K, Ning C Z. Metallic subwavelength-cavity semiconductor nanolasers[J]. Light: Science & Applications, 2012, 1(7): e20.

    [26] Hill M T, Marell M, Leong E S P, et al. Lasing in metal- insulator-metal sub-wavelength plasmonic waveguides[J]. Optics Express, 2009, 17(13): 11107-11112.

    [27] Hill M T. Metal-insulator-metal waveguides with self aligned and electrically contacted thin semiconductor cores exhibiting high optical confinement and low loss[J]. Journal of Lightwave Technology, 2013, 31(15): 2540-2549.

    [28] Li D B, Ning C Z. Giant modal gain, amplified surface Plas-mon-polariton propagation, and slowing down of energy ve-locity in a metal-semiconductor-metal structure[J]. Physical Review B, 2009, 80(15): 153304.

    [29] Li Feng, Feng Yingxia. Research on propagation properties surface plasmons slow light waveguide[J]. Information Tech-nology, 2013(5): 87-90.

    [30] Khurgin J B, Sun G. Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence[J]. Optics Express, 2012, 20(14): 15309-15325.

    [31] Peng Xiaoyan, Yang Boqian, Chu Jin, et al. Effects of nitrogen pressure during pulsed laser deposition on morphology and optical properties of N-doped ZnO nanostructures[J]. Surface Science, 2013, 609: 48-52.

    [32] Gwo S, Shih C K. Semiconductor plasmonic nanolasers: current status and perspectives[J]. Reports on Progress in Physics, 2016, 79(8): 086501.

    [33] Ning Cunzheng. Semiconductor nanolasers[J]. Progress in Physics, 2011, 31(3): 145-160.

    [34] Raether H. Surface plasmons on smooth and rough surfaces and on gratings[M]. New York: Springer-Verlag, 1988: 8.

    [35] Lee J H, Khajavikhan M, Simic A, et al. Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers[J]. Op-tics Express, 2011, 19(22): 21524-21531.

    [36] Lü Hongbo. Hybrid Plasmonic waveguides for low threshold nanolasers[D]. Beijing: Beijing University of Posts and Tele-communications, 2015.

    [37] Saxena D, Mokkapati S, Jagadish C. Semiconductor nano-lasers [J]. IEEE Photonics Journal, 2012, 4(2): 582-585.

    [38] Liu Jing, Liu Juan, Wang Yongtian, et al. Resonant properties of sub-wavelength metallic gratings[J]. Chinese Optics and Applied Optics Abstracts, 2011, 4(4): 363-368.

    [39] Maslov A V, Ning C Z. Size reduction of a semiconductor nanowire laser by using metal coating[J]. Proceedings of SPIE, 2007, 6468: 64680I.

    [40] Chu Sheng, Wang Guoping, Zhou Weihang, et al. Electrically pumped waveguide lasing from ZnO nanowires[J]. Nature Nanotechnology, 2011, 6(8): 506-510.

    [41] Milnes A G, Feucht D L. Heterojunctions and Metal-semi-conductor Junctions[M]. New York: Academic Press, 1972.

    [42] Ma Xiangyang, Pan Jingwei, Chen Peiliang, et al. Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si[J]. Optics Express, 2009, 17(16): 14426- 14433.

    [43] Lu Y J, Kim J, Chen H Y, et al. Plasmonic nanolaser using epitaxially grown silver film[J]. Science, 2012, 337(6093): 450-453.

    [44] Zhang Ye, Jia Hongbo, Wang Rongming, et al. Low-temperature growth and Raman scattering study of ver-tically aligned ZnO nanowires on Si substrate[J]. Applied Physics Letters, 2003, 83(22): 4631-4633.

    [45] Gargas D J, Moore M C, Ni A, et al. Whispering gallery mode lasing from zinc oxide hexagonal nanodisks[J]. ACS Nano, 2010, 4(6): 3270-3276.

    [46] Hwang D K, Kang S H, Lim J H, et al. p-ZnO/n-GaN hetero-structure ZnO light-emitting diodes[J]. Applied Physics Letters, 2005, 86(22): 222101.

    [47] Huang Hong, Zhao Qing, Hong Kunquan, et al. Optical and electrical properties of N-doped ZnO heterojunction photodi-ode[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 57: 113-117.

    [48] Huang Hong, Zhao Qing, Jiao Jiao, et al. Study of plasmonic nanolaser based on the deep subwavelength scale[J]. Acta Physica Sinica, 2013, 62(13): 135201.

    [49] Huang Xiaoping, Wang Peng, Lin En, et al. Fabrication of the glass microlens arrays and the collimating property on nano-laser[J]. Applied Physics A, 2016, 122(7): 649.

    [50] Huang Xiaoping, Liu Youliang, Wang Peng, et al. Optically pumped lasing and electroluminescence in ZnO/GaN nano- heterojunction array devices[J]. Applied Physics A, 2015, 121(3): 1203-1209.

    [51] Liu Shenggang, Zhang Ping, Liu Weihao, et al. Surface polariton Cherenkov light radiation source [J]. Physical Review Letters, 2012, 109(15): 153902.

    [53] Wang De, Li Xueqian. New progress in semiconductor lasers and their applications[J]. Optics and Precision Engineering, 2001, 9(3): 279-283.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Advances of plasmonic nanolasers[J]. Opto-Electronic Engineering, 2017, 44(2): 140
    Download Citation