• Chinese Physics B
  • Vol. 29, Issue 9, (2020)
Xing-Yu Zhang1、2, Yong-Liang Wang1、3、†, Chao-Lin Lv1、3, Li-Xing You1、2、3, Hao Li1、3, Zhen Wang1、3, and Xiao-Ming Xie1、3
Author Affiliations
  • 1State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences (CAS), Shanghai 200050, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3CAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China
  • show less
    DOI: 10.1088/1674-1056/ab90f4 Cite this Article
    Xing-Yu Zhang, Yong-Liang Wang, Chao-Lin Lv, Li-Xing You, Hao Li, Zhen Wang, Xiao-Ming Xie. Flux-to-voltage characteristic simulation of superconducting nanowire interference device[J]. Chinese Physics B, 2020, 29(9): Copy Citation Text show less

    Abstract

    Inspired by recent discoveries of the quasi-Josephson effect in shunted nanowire devices, we propose a superconducting nanowire interference device in this study, which is a combination of parallel ultrathin superconducting nanowires and a shunt resistor. A simple model based on the switching effect of nanowires and fluxoid quantization effect is developed to describe the behavior of the device. The current–voltage characteristic and flux-to-voltage conversion curves are simulated and discussed to verify the feasibility. Appropriate parameters of the shunt resistor and inductor are deduced for fabricating the devices.
    $$ \begin{eqnarray}{\rm{SW}}=\left\{\begin{array}{ll}{\rm{open}}, & \,i\gt {I}_{{\rm{sw}}},\,\,{\rm{hotspot}}\,\,{\rm{state}},\\ {\rm{closed}}, & \,i\lt {I}_{{\rm{re}}},\,\,{\rm{superconducting}}\,\,{\rm{state}}.\end{array}\right.\end{eqnarray}$$(1)

    View in Article

    $$ \begin{eqnarray}n{\varPhi }_{0}-({L}_{1}+{L}_{2})\cdot {i}_{{\rm{flux}}}={\varPhi }_{{\rm{e}}},\end{eqnarray}$$(2)

    View in Article

    $$ \begin{eqnarray}\begin{array}{l}{I}_{{\rm{bias}}}={i}_{1}+{i}_{2}+{i}_{3},\,\,\,L={L}_{1}={L}_{2},\\ \left\{\begin{array}{l}L\displaystyle \frac{{\rm{d}}{i}_{1}}{{\rm{d}}t}+{\gamma }_{1}{R}_{{\rm{hs}}}{i}_{1}=L\displaystyle \frac{{\rm{d}}{i}_{2}}{{\rm{d}}t}+{\gamma }_{2}{R}_{{\rm{hs}}}{i}_{2},\\ L\displaystyle \frac{{\rm{d}}{i}_{1}}{{\rm{d}}t}+{\gamma }_{1}{R}_{{\rm{hs}}}{i}_{1}={L}_{{\rm{shunt}}}\displaystyle \frac{{\rm{d}}{i}_{3}}{{\rm{d}}t}+{R}_{{\rm{shunt}}}{i}_{3},\end{array}\right.\end{array}\end{eqnarray}$$(3)

    View in Article

    Xing-Yu Zhang, Yong-Liang Wang, Chao-Lin Lv, Li-Xing You, Hao Li, Zhen Wang, Xiao-Ming Xie. Flux-to-voltage characteristic simulation of superconducting nanowire interference device[J]. Chinese Physics B, 2020, 29(9):
    Download Citation