• Photonics Research
  • Vol. 8, Issue 6, 904 (2020)
Dongmei Huang1、2, Feng Li1、2、*, Chao Shang2、3, Zihao Cheng1、2, S. T. Chu4, and P. K. A. Wai1、2
Author Affiliations
  • 1Photonics Research Centre, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
  • 2The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
  • 3Photonics Research Centre, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
  • 4Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
  • show less
    DOI: 10.1364/PRJ.386900 Cite this Article Set citation alerts
    Dongmei Huang, Feng Li, Chao Shang, Zihao Cheng, S. T. Chu, P. K. A. Wai. Frequency comb swept laser with a high-Q microring filter[J]. Photonics Research, 2020, 8(6): 904 Copy Citation Text show less
    References

    [1] D.-P. Zhou, Z. Qin, W. Li, L. Chen, X. Bao. Distributed vibration sensing with time-resolved optical frequency-domain reflectometry. Opt. Express, 20, 13138-13145(2012).

    [2] D. Chen, C. Shu, S. He. Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser. Opt. Lett., 33, 1395-1397(2008).

    [3] C.-Y. Ryu, C.-S. Hong. Development of fiber Bragg grating sensor system using wavelength-swept fiber laser. Smart Mater. Struct., 11, 468-473(2002).

    [4] R. Huber, M. Wojtkowski, J. G. Fujimoto. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express, 14, 3225-3237(2006).

    [5] R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, K. Hsu. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express, 13, 3513-3528(2005).

    [6] M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, B. J. Vakoc. High-speed optical coherence tomography by circular interferometric ranging. Nat. Photonics, 12, 111-116(2018).

    [7] T. Klein, R. Huber. High-speed OCT light sources and systems [Invited]. Biomed. Opt. Express, 8, 828-859(2017).

    [8] W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, R. Huber. High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s. Biomed. Opt. Express, 5, 2963-2977(2014).

    [9] J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, K. K. Tsia. High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch. Biomed. Opt. Express, 6, 1340-1350(2015).

    [10] A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser. Optical coherence tomography—principles and applications. Rep. Prog. Phys., 66, 239-303(2003).

    [11] A.-H. Dhalla, D. Nankivil, J. A. Izatt. Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival. Biomed. Opt. Express, 3, 633-649(2012).

    [12] R. Huber, D. C. Adler, J. G. Fujimoto. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett., 31, 2975-2977(2006).

    [13] J. Zhang, J. Jing, P. Wang, Z. Chen. Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography. Opt. Lett., 36, 4788-4790(2011).

    [14] M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, M. Rollins. Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser. Opt. Express, 15, 6251-6267(2007).

    [15] J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, R. Huber. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates. Biomed. Opt. Express, 9, 120-130(2018).

    [16] K. Hsu, P. Meemon, K.-S. Lee, P. J. Delfyett, J. P. Rolland. Broadband Fourier-domain mode-locked lasers. Photon. Sens., 1, 222-227(2011).

    [17] D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, R. A. Huber. Extended coherence length Fourier domain mode locked lasers at 1310 nm. Opt. Express, 19, 20930-20939(2011).

    [18] W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, R. Huber. Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed. Opt. Express, 3, 2647-2657(2012).

    [19] T. Pfeiffer, M. Petermann, W. Draxinger, C. Jirauschek, R. Huber. Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography. Biomed. Opt. Express, 9, 4130-4148(2018).

    [20] F. Li, K. Nakkeeran, J. N. Kutz, J. Yuan, Z. Kang, X. Zhang, P. K. A. Wai. Eckhaus instability in the fourier-domain mode locked fiber laser cavity(2017).

    [21] J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, R. Huber. Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates. PLoS ONE, 14, e0213144(2019).

    [22] N. Lippok, B. E. Bouma, B. J. Vakoc. Stable multi-megahertz circular-ranging optical coherence tomography at 13 μm. Biomed. Opt. Express, 11, 174-185(2020).

    [23] T.-H. Tsai, C. Zhou, D. C. Adler, J. G. Fujimoto. Frequency comb swept lasers. Opt. Express, 17, 21257-21270(2009).

    [24] S. Tozburun, M. Siddiqui, B. J. Vakoc. A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography. Opt. Express, 22, 3414-3424(2014).

    [25] T. Yang, X. Wei, C. Kong, S. Tan, K. K. M. Tsia, K. K. Y. Wong. An ultrafast wideband discretely swept fiber laser. IEEE J. Sel. Top. Quantum Electron., 24, 8800105(2018).

    [26] M. Wan, F. Li, X. Feng, X. Wang, Y. Cao, B. Guan, D. Huang, J. Yuan, P. K. A. Wai. Time and Fourier domain jointly mode locked frequency comb swept fiber laser. Opt. Express, 25, 32705-32712(2017).

    [27] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 6, 480-487(2012).

    [28] D. T. Spencer, J. F. Bauters, M. J. R. Heck, J. E. Bowers. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica, 1, 153-157(2014).

    [29] X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [30] W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y. Wang, W. Zhao. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett., 43, 2002-2005(2018).

    [31] M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun., 3, 765(2012).

    [32] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [33] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-560(2011).

    [34] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [35] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [36] Z. Cen, F. Li, Q. Li, P. K. A. Wai. High quality pulse train from discrete Fourier domain mode locked laser with a comb filter. Asia Communications and Photonics Conference (ACP), M1A.7(2018).

    CLP Journals

    [1] Dongmei Huang, Feng Li, Chao Shang, Zihao Cheng, P. K. A. Wai. Reconfigurable time-stretched swept laser source with up to 100 MHz sweep rate, 100 nm bandwidth, and 100 mm OCT imaging range[J]. Photonics Research, 2020, 8(8): 1360

    [2] Seongjin Bak, Gyeong Hun Kim, Hansol Jang, Chang-Seok Kim. Optical Vernier sampling using a dual-comb-swept laser to solve distance aliasing[J]. Photonics Research, 2021, 9(5): 657

    Dongmei Huang, Feng Li, Chao Shang, Zihao Cheng, S. T. Chu, P. K. A. Wai. Frequency comb swept laser with a high-Q microring filter[J]. Photonics Research, 2020, 8(6): 904
    Download Citation