• Infrared and Laser Engineering
  • Vol. 50, Issue 6, 20211040 (2021)
Suhui Yang, Yingqi Liao, Xuetong Lin, Xinyu Liu, Ruoyi Qi, and Yan Hao
Author Affiliations
  • School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/IRLA20211040 Cite this Article
    Suhui Yang, Yingqi Liao, Xuetong Lin, Xinyu Liu, Ruoyi Qi, Yan Hao. Application of vortex light field in strong scattering environment[J]. Infrared and Laser Engineering, 2021, 50(6): 20211040 Copy Citation Text show less
    References

    [1] P A M Dirac. Quantised singularities in the electromagnetic field. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 133, 60-72(1931).

    [2] Nye J F, Berry M V. Dislocations in wave trains [J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1974, 336(1605): 165190

    [3] J M Vaughan, D V Willetts. Interference properties of a light beam having a helical wave surface. Optics Communications, 30, 263-267(1979).

    [4] Berry M V, Nye J F, Wright F J. The elliptic umbilic diffraction catastrophe [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical Engineering Sciences, 1979, 291(1382): 453484.

    [5] N B Baranova, B Y Zel’Dovich, A V Mamaev, et al. Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment). Jetp Letters, 33, 206B(1981).

    [6] P Coullet, L Gil, F Rocca. Optical vortices. Optics Communications, 73, 403-408(1989).

    [7] L Allen, M W Beijersbergen, R Spreeuw, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 45, 8185(1992).

    [8] N R Heckenberg, R Mcduff, C P Smith, et al. Generation of optical phase singularities by computer-generated holograms. Optics Letters, 17, 221(1992).

    [9] A Bekshaev, O Orlinska, M Vasnetsov. Optical vortex generation with a "fork" hologram under conditions of high-angle diffraction. Optics Communications, 283, 2006-2016(2010).

    [10] A Y Bekshaev, S V Sviridova, A Y Popov, et al. Generation of optical vortex light beams by volume holograms with embedded phase singularity. Optics Communications, 285, 4005-4014(2012).

    [11] Y C Lin, T H Lu, K F Huang, et al. Generation of optical vortex array with transformation of standing-wave laguerre-gaussian mode. Optics Express, 19, 10293-10303(2011).

    [12] S C Chu, T Ohtomo, K Otsuka. Generation of doughnutlike vortex beam with tunable orbital angular momentum from lasers with controlled hermite-gaussian modes. Applied Optics, 47, 2583-2591(2008).

    [13] S C Chu, K Otsuka. Doughnut-like beam generation of laguerre-gaussian mode with extremely high mode purity. Optics Communications, 281, 1647-1653(2008).

    [14] M W Beijersbergen, R Coerwinkel, M Kristensen, et al. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, 112, 321-327(1994).

    [15] V V Kotlyar, A A Almazov, S N Khonina, et al. Generation of phase singularity through diffracting a plane or gaussian beam by a spiral phase plate. Journal of the Optical Society of America A Optics Image Science & Vision, 22, 849-861(2005).

    [16] G A Turnbull, D A Robertson, G M Smith, et al. The generation of free-space laguerre-gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. Optics Communications, 127, 183-188(1996).

    [17] M Walde, A Jost, K Wicker, et al. Engineering an achromatic Bessel beam using a phase-only spatial light modulator and an iterative Fourier transformation algorithm. Optics Communications, 383, 64-68(2017).

    [18] A S Ostrovsky, C Rickenstorff-Parrao, V Arrizón. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator. Optics Letters, 38, 534-536(2013).

    [19] G Yuan, Q Wang, X Yuan. Dynamic generation of plasmonic Moiré fringes using phase-engineered optical vortex beam. Optics Letters, 37, 2715-2717(2012).

    [20] E Abramochkin, N Losevsky, V Volostnikov. Generation of spiral-type laser beams. Optics Communications, 141, 59-64(1997).

    [21] R Oron, S Blit, N Davidson, et al. The formation of laser beams with pure azimuthal or radial polarization. Appl Phys Lett, 77, 3322-3324(2000).

    [22] R Oron, N Davidson, A A Friesem, et al. Efficient formation of pure helical laser beams. Optics Communications, 182, 205-208(2000).

    [23] I A Litvin, S Ngcobo, D Naidoo, et al. Doughnut laser beam as an incoherent superposition of two petal beams. Opt Lett, 39, 704-707(2014).

    [24] E M Wright, J Arlt, K Dholakia. Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams. Physical Review A, 63, 013608(2000).

    [25] D W Zhang, X C Yuan. Optical doughnut for optical tweezers. Opt Lett, 28, 740-742(2003).

    [26] C Vetter, R Steinkopf, K Bergner, et al. Realization of free-space long-distance self-healing bessel beams. Laser & Photonics Reviews, 1900103(2019).

    [27] J Wang, J Y Yang, I M Fazal, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 6, 488-496(2012).

    [28] N Bozinovic, Y Yue, Y Ren, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [29] Chunqing Gao, Shikun Zhang, Shiyao Fu, et al. Adaptive optics wavefront correction techniques of vortex beams. Infrared and Laser Engineering, 46, 0201001(2017).

    [30] Xizheng Ke, Chuan Ning, Jiao Wang. Crosstalk analysis of orbital angular momentum-multiplexed state under atmospheric turbulence. Infrared and Laser Engineering, 47, 1122002(2018).

    [31] V Westphal, S W Hell. Nanoscale resolution in the focal plane of an optical microscope. Physical Review Letters, 94, 143903(2005).

    [32] C Maurer, A Jesacher, S Fürhapter, et al. Upgrading a microscope with a spiral phase plate. Journal of Microscopy, 230, 134-142(2010).

    [33] Levenson M D, Mikawa Y, Hayashi N, et al. Vtex viaprocess: analysis mask fabrication f contact CDs

    [34] S M Dutra, E R Eliel, G Nienhuis, et al. Comment on "orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion". Physical Review Letters, 86, 5208-5216(2001).

    [35] A Mair, Al Vaziri, G Weihs, et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [36] I D Maleev, A S Marathay, G A Swartzlander, et al. Spatial correlation singularity of a vortex field. Physical Review Letters, 92, 143905(2004).

    [37] Gongxiang Wei, Xiaojuan Liu, Yunyan Liu, et al. Spin and orbital angular momentum of light. Laser & Optoelectronics Progress, 51, 30-37(2014).

    [38] G Gbur, T D Visser. Coherence vortices in partially coherent beams. Optics Communications, 222, 117-125(2003).

    [39] H F Schouten, G Gbur, T D Visser, et al. Phase singularities of the coherence functions in Young's interference pattern. Optics Letters, 28, 968-970(2003).

    [40] A Nes, P. Trk. Rigorous analysis of spheres in gauss-laguerre beams. Optics Express, 15, 13360(2007).

    [41] X Zambrana-Puyalto, X Vidal, G Molina-Terriza. Excitation of single multipolar modes with engineered cylindrically symmetric fields. Optics Express, 20, 24536-24544(2012).

    [42] A S Rury, R Freeling. Mie scattering of purely azimuthal laguerre-gauss beams: angular-momentum-induced transparency. Physical Review A, 86, 11781(2012).

    [43] A D Kiselev, D O Plutenko. Mie scattering of laguerre-gaussian beams: photonic nanojets and near-field optical vortices. Physical Review A, 89, 043803(2014).

    [44] Wenbo Sun, Yongxiang Hu, C Weimer, et al. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: far-field characteristics. Journal of Quantitative Spectroscopy and Radiative Transfer, 188, 200-213(2017).

    [45] Jun Ou, Yuesong Jiang, Yuwei Shao, et al. Scattering of the Laguerre-Gaussian beam by a homogeneous spheroid. Acta Physica Sinica, 241-248(2013).

    [46] D Palacios, D Rozas, G A Swartzlander. Observed scattering into a dark optical vortex core. Phys Rev Lett, 88, 103902-103904(2002).

    [47] G Swartzlander. Peering into darkness with a vortex spatial filter. Optics Letters, 26, 497-505(2001).

    [48] G Foo, D Palacios, G Swartzlander. Optical vortex coronagraph. Opt Lett, 30, 3308-3310(2005).

    [49] G Swartzlander, E Ford, R Abdul-Malik, et al. Astronomical demonstration of an optical vortex coronagraph. Opt Express, 16, 10200-10207(2008).

    [50] J H Lee, G Foo, E G Johnson, et al. Experimental verification of an optical vortex coronagraph. Physical Review Letters, 97, 053901(2006).

    [51] B Cochenour, K Morgan, K Miller, et al. Propagation of modulated optical beams carrying orbital angular momentum in turbid water. Appl Opt, 55, C34(2016).

    [52] W B Wang, R Gozali, L Shi, et al. Deep transmission of Laguerre–Gaussian vortex beams through turbid scattering media. Opt Lett, 41, 2069-2072(2016).

    [53] Wang W B, Gozali R, Nguyen T A, et al. Propagation transmission of optical vtex beams through turbid scatteringwall with bital angular momentums [C]Conference onOptical Biopsy XIII, International Society f Optics Photonics, 2015: 931805.

    [54] Mgan K S, Johnson E G, Cochenour B M. Attenuation of beams with bital angular momentum f underwater communication systems [C]Oceans, IEEE, 2016: 13.

    [55] A W Jantzi, M G Cockrell, L K Rumbaugh, et al. Mixed numerical and analytical method for investigating orbital angular momentum beam scattering in turbid water. Optical Engineering, 58, 043104(2019).

    [56] Bo Peng, Kun Zhong, Zhongyun Li. Influence of topological charge on turbid underwater propagation of Laguerre-Gaussian vortex beams. Acta Optica Sinica, 37, 0601005(2017).

    [57] Cunzhi Sun, Ziyang Chen, Jixiong Pu. Experimental study of tightly focused vortex beams through turbid media. Acta Optica Sinica, 34, 0601002(2014).

    [58] S Gangireddy, S Prabhakar, A Kumar, et al. Higher order optical vortices and formation of speckles. Optics Letters, 39, 4364-4367(2014).

    [59] Jilin Liu, Huiling Huang, Ziyang Chen, et al. Investigation on the speckle produced by vortex beams through a scattering medium. Journal of Optoelectronics · Laser, 26, 1626-1632(2015).

    [60] S G Reddy, A Kumar, S Prabhakar, et al. Experimental generation of ring-shaped beams with random sources. Optics Letters, 38, 4441-4444(2013).

    [61] Y Gilead, Y Silberberg. Effect of second-order coupling on photon-pair statistics in waveguide structures. Phys Rev A, 96, 053803(2017).

    [62] K W C Chan, M N O’Sullivan, R W Boyd. Optimization of thermal ghost imaging: high-order correlations vs background subtraction. Optics Express, 18, 5562-5573(2010).

    [63] W Sun, Y Hu, D G MacDonnell, et al. Technique to separate lidar signal and sunlight. Optics Express, 24, 12949(2016).

    [64] Cochenour B, Rodgers L, Laux A, et al. The detection of objectsin a turbid underwater medium using bital angular momentum(OAM) [C]SPIE, 2017, 10186: 1018603.

    [65] A Jantzi, W Jemison, A Laux, et al. Enhanced underwater ranging using an optical vortex. Optics Express, 26, 2668-2674(2018).

    Suhui Yang, Yingqi Liao, Xuetong Lin, Xinyu Liu, Ruoyi Qi, Yan Hao. Application of vortex light field in strong scattering environment[J]. Infrared and Laser Engineering, 2021, 50(6): 20211040
    Download Citation