• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 5, 547 (2021)
Ye WANG1、2、*, Song ZHANG1、2, and Bing ZHANG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2021.05.001 Cite this Article
    WANG Ye, ZHANG Song, ZHANG Bing. Femtosecond transient absorption spectroscopy and its applications[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 547 Copy Citation Text show less
    References

    [1] Deisenhofer J, Epp O, Miki K, et al. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3  resolution [J]. Nature, 1985, 318(6047): 618-624.

    [2] Yu L J, Suga M, Wang-Otomo Z Y, et al. Structure of photosynthetic LH1-RC supercomplex at 1.9  resolution [J]. Nature, 2018, 556(7700): 209-213.

    [3] Qian P, Alistair Siebert C, Wang P Y, et al. Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9  [J]. Nature, 2018, 556(7700): 203-208.

    [4] Niwa S, Yu L J, Takeda K, et al. Structure of the LH1-RC complex from thermochromatium tepidum at 3.0  [J]. Nature, 2014, 508(7495): 228-232.

    [5] Jahnke K, Ritzmann N, Fichtler J. Proton gradients from light-harvesting E. coli control DNA assemblies for synthetic cells [J]. Nature Communications, 2021, 12: 1-9.

    [6] Trautman J K, Shreve A P, Violette C A, et al. Femtosecond dynamics of energy transfer in B800-850 light-harvesting complexes of Rhodobacter sphaeroides [J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(1): 215-219.

    [7] Cheng Y C, Fleming G R. Dynamics of light harvesting in photosynthesis [J]. Annual Review of Physical Chemistry, 2009, 60(1): 241-262.

    [8] Kumar G S, Lin Q. Light-triggered click chemistry [J]. Chemical Reviews, 2021, 121(12): 6991-7031.

    [9] Sebelík V, Kuznetsova V, Lokstein H, et al. Transient absorption of chlorophylls and carotenoids after two-photon excitation of LHCII [J]. The Journal of Physical Chemistry Letters, 2021, 12(12): 3176-3181.

    [10] Kuramochi H, Tahara T. Tracking ultrafast structural dynamics by time-domain Raman spectroscopy [J]. Journal of the American Chemical Society, 2021, 143(26): 9699-9717.

    [11] Kohler G. Derivation and diversification of monoclonal antibodies [J]. Science, 1986, 233(4770): 1281-1286.

    [12] Khundkar L R, Zewail A H. Ultrafast molecular reaction dynamics in real-time: Progress over a decade [J]. Annual Review of Physical Chemistry, 1990, 41(1): 15-60.

    [13] Suzuki T. Femtosecond time-resolved photoelectron imaging [J]. Annual Review of Physical Chemistry, 2006, 57(1): 555-592.

    [14] Suzuki T. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases [J]. International Reviews in Physical Chemistry, 2012, 31(2): 265-318.

    [15] Bragg A E, Verlet J R R, Kammrath A, et al. Hydrated electron dynamics: From clusters to bulk [J]. Science, 2004, 306(5696): 669-671.

    [16] Bragg A E, Verlet J R R, Kammrath A, et al. Electronic relaxation dynamics of water cluster anions [J]. Journal of the American Chemical Society, 2005, 127(43): 15283-15295.

    [17] King S B, Stephansen A B, Yokoi Y, et al. Electron accommodation dynamics in the DNA base thymine [J]. The Journal of Chemical Physics, 2015, 143(2): 024312.

    [18] Li W L, Kunin A, Matthews E, et al. Photodissociation dynamics of the iodide-uracil (I-U) complex [J]. The Journal of Chemical Physics, 2016, 145(4): 044319.

    [19] Kunin A, Li W L, Neumark D M. Time-resolved photoelectron imaging of iodide-nitromethane (I-·CH3NO2) photodissociation dynamics [J]. Physical Chemistry Chemical Physics, 2016, 18(48): 33226-33232.

    [20] Studzinski H, Zhang S, Wang Y, et al. Ultrafast nonradiative dynamics in electronically excited hexafluorobenzene by femtosecond time-resolved mass spectrometry [J]. The Journal of Chemical Physics, 2008, 128(16): 164314.

    [21] Hüter O, Sala M, Neumann H, et al. Long-lived coherence in pentafluorobenzene as a probe of ππ(*)-πσ(*) vibronic coupling [J]. The Journal of Chemical Physics, 2016, 145(1): 014302.

    [22] Hüter O, Temps F. Ultrafast α-CC bond cleavage of acetone upon excitation to 3p and 3d Rydberg states by femtosecond time-resolved photoelectron imaging [J]. The Journal of Chemical Physics, 2016, 145(21): 214312.

    [23] Noller B, Poisson L, Maksimenka R, et al. Ultrafast dynamics of isolated phenylcarbenes followed by femtosecond time-resolved velocity map imaging [J]. The Journal of Physical Chemistry A, 2009, 113(13): 3041-3050.

    [24] Wang B X, Liu B K, Wang Y Q, et al. Ultrafast dynamics of pyridine in “channel three" region [J]. International Journal of Mass Spectrometry, 2010, 289(2/3): 92-97.

    [25] Yang D, Chen Z, He Z, et al. Ultrafast excited-state dynamics of 2, 4-dimethylpyrrole [J]. Physical Chemistry Chemical Physics, 2017, 19(43): 29146-29152.

    [26] Yang D, Min Y, Chen Z, et al. Ultrafast excited-state dynamics of 2, 5-dimethylpyrrole [J]. Physical Chemistry Chemical Physics, 2018, 20(22): 15015-15021.

    [27] He Z G, Yang D Y, Chen Z C, et al. An accidental resonance mediated predissociation pathway of water molecules excited to the electronic C state [J]. Physical Chemistry Chemical Physics, 2017, 19(44): 29795-29800.

    [28] Grundmann S, Trabert D, Fehre K, et al. Zeptosecond birth time delay in molecular photoionization [J]. Science, 2020, 370(6514): 339-341.

    [29] Dobryakov A L, Kovalenko S A, Weigel A, et al. Femtosecond pump/supercontinuum-probe spectroscopy: Optimized setup and signal analysis for single-shot spectral referencing [J]. Review of Scientific Instruments, 2010, 81(11): 113106.

    [30] Zhang X X, Würth C, Zhao L, et al. Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction [J]. Review of Scientific Instruments, 2011, 82(6): 063108.

    [31] Zhang W, Xu W, Zhang G, et al. Direct tracking excited-state intramolecular charge redistribution of acceptor-donor-acceptor molecule by means of femtosecond stimulated Raman spectroscopy [J]. The Journal of Physical Chemistry B, 2021, 125(17): 4456-4464.

    [32] Li S, Long J, Ling F, et al. Real-time visualization of the vibrational wavepacket dynamics in electronically excited pyrimidine via femtosecond time-resolved photoelectron imaging [J]. The Journal of Chemical Physics, 2017, 147(4): 044309.

    [33] Zhou Q H, Zhou M M, Wei Y X, et al. Solvent effects on the triplet-triplet annihilation upconversion of diiodo-Bodipy and perylene [J]. Physical Chemistry Chemical Physics, 2017, 19(2): 1516-1525.

    [34] Wei Y X, Zhou M M, Zhou Q H, et al. Triplet-triplet annihilation upconversion kinetics of C60-Bodipy dyads as organic triplet photosensitizers [J]. Physical Chemistry Chemical Physics, 2017, 19(33): 22049-22060.

    [35] Zhang S, Sun S M, Zhou M M, et al. Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product [J]. Scientific Reports, 2017, 7(1): 43419.

    [36] Wang Y M, Tang Y, Zhang S, et al. Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging [J]. Acta Physica Sinica, 2018, 67(22): 227802.

    [37] Zhou M M, Zhang S, Wang L, et al. Ultrafast photoinduced charge transfer character in ofloxacin singlet decay [J]. Chemical Physics Letters, 2018, 710: 1-5.

    [38] Wang Y P, Li C H, Zhang B, et al. Ultrafast investigation of excited-state dynamics in trans-4-methoxyazobenzene studied by femtosecond transient absorption spectroscopy [J]. Chinese Journal of Chemical Physics, 2018, 31(6): 749-755.

    [39] Sun S M, Zhang S, Jiang C, et al. Theoretical study on twisted intramolecular charge transfer of 1-aminoanthraquinone in different solvents [J]. Chinese Physics B, 2018, 27(8): 083401.

    [40] Wu K, Zhang T, Wang Z, et al. De novo design of excited-state intramolecular proton transfer emitters via a thermally activated delayed fluorescence channel [J]. Journal of the American Chemical Society, 2018, 140(28): 8877-8886.

    [41] Xiong J B, Yuan Y X, Wang L, et al. Evidence for aggregation-induced emission from free rotation restriction of double bond at excited state [J]. Organic Letters, 2018, 20(2): 373-376.

    [42] Zhou M M, Wang L, Zhang S, et al. Ultrafast spectroscopy of the primary charge transfer and ISC processes in 9-anthraldehyde [J]. Chemical Physics Letters, 2019, 717: 1-6.

    [43] Liu C, Bao L, Yang M L, et al. Surface sensitive photoluminescence of carbon nanodots: Coupling between the carbonyl group and π-electron system [J]. The Journal of Physical Chemistry Letters, 2019, 10(13): 3621-3629.

    [44] Chen Z L, Yu Z L, Zhou M M, et al. Chlorophyll-based near-infrared fluorescent nanocomposites: Preparation and optical properties [J]. ACS Omega, 2020, 5(24): 14261-14266.

    [45] Lei H W, Dai P, Wang X R, et al. Perovskite solar cells: In?situ defect passivation with silica oligomer for enhanced performance and stability of perovskite solar cells [J]. Advanced Materials Interfaces, 2020, 7(3): 2070013.

    [46] Liang Y, Guo Y R, Wang Y, et al. Combined ultrafast spectroscopic and TDDFT theoretical studies on dual fluorescence emissions promoted by ligand-to-metal charge transfer (LMCT) excited states of tungsten-containing organometallic complexes [J]. Chemical Physics Letters, 2020, 748: 137396.

    [47] Shi Y N, Zhao X Y, Wang C, et al. Ultrafast nonadiabatic photoisomerization dynamics mechanism for the UV photoprotection of stilbenoids in grape skin [J]. Chemistry-An Asian Journal, 2020, 15(9): 1478-1483.

    [48] Shu G, Wang Y, Li Y D, et al. A high performance and low cost poly (dibenzothiophene-S, S-dioxide) @TiO2 composite with hydrogen evolution rate up to 51.5 mmol h-1g-1 [J]. Journal of Materials Chemistry A, 2020, 8(35): 18292-18301.

    [49] Wei Y X, Wang Y, Zhou Q H, et al. Solvent effects on triplet-triplet annihilation upconversion kinetics of perylene with a Bodipy-phenyl-C60 photosensitizer [J]. Physical Chemistry Chemical Physics, 2020, 22(45): 26372-26382.

    [50] Wang L, Zhang S, Wang Y, et al. Dispersion-induced structural preference in the ultrafast dynamics of diphenyl ether [J]. RSC Advances, 2020, 10(31): 18093-18098.

    [51] Wang L, Zhang S, Wang Y, et al. Effect of hydrogen bonding on the nonradiative properties of dibenzofuran [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 224: 117466.

    [52] Wang L, Zhang S, Wang Y, et al. The geometry relaxation and photodeactivation from the S2 state of dibenzofuran studied by ultrafast spectroscopy [J]. Zeitschrift Für Physikalische Chemie, 2020, 234(7/8/9): 1495-1506.

    [53] Yang M L, Liu C, Peng Y, et al. Surface chemistry tuning the selectivity of carbon nanodots towards Hg2+ recognition [J]. Analytica Chimica Acta, 2021, 1146: 33-40.

    [54] Wang Y N, Guo Y R, Liang Y, et al. Coordination-promoted photoluminescence induced by configuration twisting regulation [J]. Journal of Luminescence, 2021, 231: 117783.

    [55] Wang M Q, Shi Y N, Guo Y R, et al. Nonadiabatic dynamics mechanisms of natural UV Photoprotection ompounds chlorogenic acid and isochlorogenic acid a: Double conjugated structures but single photoexcited channel [J]. Journal of Molecular Liquids, 2021, 324: 114725.

    [56] Wang L. Effect of Intermolecular Hydrogen Bonding and Dispersion Interactions on Excited State Dynamics of Oxygen-Containing Aromatic Compounds [D]. Wuhan: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 2020.

    [57] Vittardi S B, Thapa Magar R, Breen D J, et al. A future perspective on phototriggered isomerizations of transition metal sulfoxides and related complexes [J]. Journal of the American Chemical Society, 2021, 143(2): 526-537.

    [58] Carpenter B K, Harvey J N, Orr-Ewing A J. The study of reactive intermediates in condensed phases [J]. Journal of the American Chemical Society, 2016, 138(14): 4695-4705.

    [59] Bordiga S, Groppo E, Agostini G, et al. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques [J]. Chemical Reviews, 2013, 113(3): 1736-1850.

    [60] Rasmusson M, Tarnovsky A N, kesson E, et al. On the use of two-photon absorption for determination of femtosecond pump-probe cross-correlation functions [J]. Chemical Physics Letters, 2001, 335(3/4): 201-208.

    [61] Ekvall K, van der Meulen P, Dhollande C, et al. Cross phase modulation artifact in liquid phase transient absorption spectroscopy [J]. Journal of Applied Physics, 2000, 87(5): 2340-2352.

    [62] Dietzek B, Pascher T, Sundstrm V, et al. Appearance of coherent artifact signals in femtosecond transient absorption spectroscopy in dependence on detector design [J]. Laser Physics Letters, 2007, 4(1): 38-43.

    [63] Kovalenko S A, Ernsting N P, Ruthmann J. Femtosecond hole-burning spectroscopy of the dye DCM in solution: The transition from the locally excited to a charge-transfer state [J]. Chemical Physics Letters, 1996, 258(3/4): 445-454.

    [64] Dobryakov A L, Kovalenko S A, Ernsting N P. Coherent and sequential contributions to femtosecond transient absorption spectra of a rhodamine dye in solution [J]. The Journal of Chemical Physics, 2005, 123(4): 044502.

    [65] Ziólek M, Lorenc M, Naskrecki R. Determination of the temporal response function in femtosecond pump-probe systems [J]. Applied Physics B, 2001, 72(7): 843-847.

    [66] Kovalenko S A, Dobryakov A L, Ruthmann J, et al. Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing [J]. Physical Review A, 1999, 59(3): 2369-2384.

    [67] Oleinick N L, Morris R L, Belichenko I. The role of apoptosis in response to photodynamic therapy: What, where, why, and how [J]. Photochemical & Photobiological Sciences, 2002, 1(1): 1-21.

    [68] Cheng Y H, Cheng H, Jiang C X, et al. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy [J]. Nature Communications, 2015, 6(1): 8785.

    [69] Morris R L, Azizuddin K, Lam M, et al. Fluorescence resonance energy transfer reveals a binding site of a photosensitizer for photodynamic therapy [J]. Cancer Research, 2003, 63(17): 5194-5197.

    [70] Cosa G. Photodegradation and photosensitization in pharmaceutical products: Assessing drug phototoxicity [J]. Pure and Applied Chemistry, 2004, 76(2): 263-275.

    [71] Pogue B W, Momma T, Wu H C, et al. Transient absorption changes in vivo during photodynamic therapy with pulsed-laser light [J]. British Journal of Cancer, 1999, 80(3): 344-351.

    [72] Schuster G B. Long-range charge transfer in DNA: Transient structural distortions control the distance dependence [J]. Accounts of Chemical Research, 2000, 33(4): 253-260.

    [73] Shao F W, Augustyn K, Barton J K. Sequence dependence of charge transport through DNA domains [J]. Journal of the American Chemical Society, 2005, 127(49): 17445-17452.

    [74] Bergeron F, Nair V K, Wagner J R. Near-UV induced interstrand cross-links in anthraquinone-DNA duplexes [J]. Journal of the American Chemical Society, 2006, 128(46): 14798-14799.

    [75] Williams T T, Dohno C, Stemp E D A, et al. Effects of the photooxidant on DNA-mediated charge transport [J]. Journal of the American Chemical Society, 2004, 126(26): 8148-8158.

    [76] Qu X, Wan C, Becker H C, et al. The anticancer drug-DNA complex: Femtosecond primary dynamics for anthracycline antibiotics function [J]. Proceedings of the National Academy of Sciences, 2001, 98(25): 14212-14217.

    [77] Armitage B, Yu C J, Devadoss C, et al. Cationic anthraquinone derivatives as catalytic DNA photonucleases: Mechanisms for DNA damage and quinone recycling [J]. Journal of the American Chemical Society, 1994, 116(22): 9847-9859.

    [78] Ryu J, Kim H W, Kim M S, et al. Ultrafast excited state intramolecular proton transfer dynamics of 1-hydroxyanthraquinone in solution [J]. Bulletin of the Korean Chemical Society, 2013, 34(2): 465-469.

    [79] Sun S M, Zhang S, Liu K, et al. Excited state intramolecular proton transfer of 1-hydroxyanthraquinone [J]. Chinese Journal of Chemical Physics, 2015, 28(5): 545-551.

    [80] Sigman D S, Mazumder A, Perrin D M. Chemical nucleases [J]. Chemical Reviews, 1993, 93(6): 2295-2316.

    [81] McKnight R E, Zhang J G, Dixon D W. Binding of a homologous series of anthraquinones to DNA [J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14(2): 401-404.

    [82] Breslin D T, Coury J E, Anderson J R, et al. Anthraquinone photonuclease structure determines its mode of binding to DNA and the cleavage chemistry observed [J]. Journal of the American Chemical Society, 1997, 119(21): 5043-5044.

    [83] Carmieli R, Smeigh A L, Mickley Conron S M, et al. Structure and dynamics of photogenerated triplet radical ion pairs in DNA hairpin conjugates with anthraquinone end caps [J]. Journal of the American Chemical Society, 2012, 134(27): 11251-11260.

    [84] Müller C, Schroeder J, Troe J. Intramolecular hydrogen bonding in 1, 8-dihydroxyanthraquinone, 1-aminoanthraquinone, and 9-hydroxyphenalenone studied by picosecond time-resolved fluorescence spectroscopy in a supersonic jet [J]. The Journal of Physical Chemistry B, 2006, 110(40): 19820-19832.

    [85] Joh N H, Oberai A, Yang D, et al. Similar energetic contributions of packing in the core of membrane and water-soluble proteins [J]. Journal of the American Chemical Society, 2009, 131(31): 10846-10847.

    [86] Hanlon S. The importance of London dispersion forces in the maintenance of the deoxyribonucleic acid helix [J]. Biochemical and Biophysical Research Communications, 1966, 23(6): 861-867.

    [87] Fang C, Frontiera R R, Tran R, et al. Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy [J]. Nature, 2009, 462(7270): 200-204.

    [88] Jacquemin D, Zúiga J, Requena A, et al. Assessing the importance of proton transfer reactions in DNA [J]. Accounts of Chemical Research, 2014, 47(8): 2467-2474.

    [89] Chen C L, Chen Y T, Demchenko A P, et al. Amino proton donors in excited-state intramolecular proton-transfer reactions [J]. Nature Reviews Chemistry, 2018, 2(7): 131-143.

    [90] Demchenko A P, Tang K C, Chou P T. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization [J]. Chemical Society Reviews, 2013, 42(3): 1379-1408.

    [91] Hsieh C C, Jiang C M, Chou P T. Recent experimental advances on excited-state intramolecular proton coupled electron transfer reaction [J]. Accounts of Chemical Research, 2010, 43(10): 1364-1374.

    [92] Canuto S. Solvation Effects on Molecules and Biomolecules: Computational Methods and Applications [M]. Netherlands: Springer, 2008: 321-348.

    [93] Funk D J, Oldenborg R C, Dayton D P, et al. Gas-phase absorption and laser-induced fluorescence measurements of representative polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and a polycyclic aromatic hydrocarbon [J]. Applied Spectroscopy, 1995, 49(1): 105-114.

    [94] Aylward L L, Hays S M, Karch N J, et al. Relative susceptibility of animals and humans to the cancer hazard posed by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin using internal measures of dose [J]. Environmental Science & Technology, 1996, 30(12): 3534-3543.

    [95] Alawi M A, Wichmann H, Lorenz W, et al. Dioxins and furans in the Jordanian environment part 2: Levels of PCDD and PCDF in human milk samples from Jordan [J]. Chemosphere, 1996, 33(12): 2469-2474.

    [96] Faroon O, Jones D, de Rosa C. Effects of polychlorinated biphenyls on the nervous system [J]. Toxicology and Industrial Health, 2000, 16(7/8): 305-333.

    [97] Lehn J M. Supramolecular chemistry: Scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture) [J]. Angewandte Chemie International Edition, 1988, 27(1): 89-112.

    [98] Cerny J, Hobza P. Non-covalent interactions in biomacromolecules [J]. Physical Chemistry Chemical Physics, 2007, 9(39): 5291-5303.

    [99] Meyer E A, Castellano R K, Diederich F. Interactions with aromatic rings in chemical and biological recognition [J]. Angewandte Chemie International Edition, 2003, 42(11): 1210-1250.

    [100] Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238.

    [101] Lim X. The nanolight revolution is coming [J]. Nature, 2016, 531(7592): 26-28.

    [102] Zhang M, Wang L J, Shu S, et al. Bifurcating electron-transfer pathways in DNA photolyases determine the repair quantum yield [J]. Science, 2016, 354(6309): 209-213.

    [103] Werner M J. Perspective: Protect the USA from UVA [J]. Nature, 2014, 515(7527): S126.

    [104] Stavros V G. A bright future for sunscreens [J]. Nature Chemistry, 2014, 6(11): 955-956.

    [105] Deng Y, Ediriwickrema A, Yang F, et al. A sunblock based on bioadhesive nanoparticles [J]. Nature Materials, 2015, 14(12): 1278-1285.

    [106] Dean J C, Kusaka R, Walsh P S, et al. Plant sunscreens in the UV-B: Ultraviolet spectroscopy of jet-cooled sinapoyl malate, sinapic acid, and sinapate ester derivatives [J]. Journal of the American Chemical Society, 2014, 136(42): 14780-14795.

    [107] Baker L A, Horbury M D, Greenough S E, et al. Broadband ultrafast photoprotection by oxybenzone across the UVB and UVC spectral regions [J]. Photochemical & Photobiological Sciences, 2015, 14(10): 1814-1820.

    [108] Verma P K, Koch F, Steinbacher A, et al. Ultrafast UV-induced photoisomerization of intramolecularly H-bonded symmetric β-diketones [J]. Journal of the American Chemical Society, 2014, 136(42): 14981-14989.

    [109] Karsili T N V, Marchetti B, Ashfold M N R, et al. Ab initio study of potential ultrafast internal conversion routes in oxybenzone, caffeic acid, and ferulic acid: Implications for sunscreens [J]. The Journal of Physical Chemistry A, 2014, 118(51): 11999-12010.

    [110] Woolley J M, Losantos R, Sampedro D, et al. Computational and experimental characterization of novel ultraviolet filters [J]. Physical Chemistry Chemical Physics, 2020, 22(43): 25390-25395.

    [111] Danovaro R, Bongiorni L, Corinaldesi C, et al. Sunscreens cause coral bleaching by promoting viral infections [J]. Environmental Health Perspectives, 2008, 116(4): 441-447.

    [112] Holt E L, Stavros V G. Applications of ultrafast spectroscopy to sunscreen development, from first principles to complex mixtures [J]. International Reviews in Physical Chemistry, 2019, 38(2): 243-285.

    [113] Rodrigues N D N, Cole-Filipiak N C, Turner M A P, et al. Substituent position effects on sunscreen photodynamics: A closer look at methyl anthranilate [J]. Chemical Physics, 2018, 515: 596-602.

    [114] Rodrigues N D N, Stavros V G. From fundamental science to product: A bottom-up approach to sunscreen development [J]. Science Progress, 2018, 101(1): 8-31.

    [115] Baker L A, Staniforth M, Flourat A L, et al. Gas-solution phase transient absorption study of the plant sunscreen derivative methyl sinapate [J]. ChemPhotoChem, 2018, 2(8): 743-748.

    [116] Minkin V I. Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds [J]. Chemical Reviews, 2004, 104(5): 2751-2776.

    [117] Irie M, Fukaminato T, Matsuda K, et al. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators [J]. Chemical Reviews, 2014, 114(24): 12174-12277.

    [118] Evans R A, Hanley T L, Skidmore M A, et al. The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix [J]. Nature Materials, 2005, 4(3): 249-253.

    [119] Hirshberg Y. Reversible formation and eradication of colors by irradiation at low temperatures: A photochemical memory model [J]. Journal of the American Chemical Society, 1956, 78(10): 2304-2312.

    [120] Andréasson J, Pischel U, Straight S D, et al. All-photonic multifunctional molecular logic device [J]. Journal of the American Chemical Society, 2011, 133(30): 11641-11648.

    [121] Koumura N, Zijlstra R W J, van Delden R A, et al. Light-driven monodirectional molecular rotor [J]. Nature, 1999, 401(6749): 152-155.

    [122] Koumura N, Geertsema E M, Meetsma A. Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center [J]. Journal of the American Chemical Society, 2000, 122(48): 12005-12006.

    [123] Beharry A A, Woolley G A. Azobenzene photoswitches for biomolecules [J]. Chemical Society Reviews, 2011, 40(8): 4422-4437.

    [124] Samanta S, Qin C G, Lough A J, et al. Bidirectional photocontrol of peptide conformation with a bridged azobenzene derivative [J]. Angewandte Chemie International Edition, 2012, 51(26): 6452-6455.

    [125] Kamiya Y, Asanuma H. Light-driven DNA nanomachine with a photoresponsive molecular engine [J]. Accounts of Chemical Research, 2014, 47(6): 1663-1672.

    [126] Bandara H M, Burdette S C. Photoisomerization in different classes of azobenzene [J]. Chemical Society Reviews, 2012, 41(5): 1809-1825.

    [127] Ishibashi Y, Umesato T, Fujiwara M, et al. Solvent polarity dependence of photochromic reactions of a diarylethene derivative as revealed by steady-state and transient spectroscopies [J]. The Journal of Physical Chemistry C, 2016, 120(2): 1170-1177.

    [128] Sotome H, Une K, Nagasaka T, et al. A dominant factor of the cycloreversion reactivity of diarylethene derivatives as revealed by femtosecond time-resolved absorption spectroscopy [J]. The Journal of Chemical Physics, 2020, 152(3): 034301.

    [129] Vrakking M J J. Control of attosecond entanglement and coherence [J]. Physical Review Letters, 2021, 126(11): 113203.

    [130] Bertolino M, Dahlstrm J M. Multiphoton interaction phase shifts in attosecond science [J]. Physical Review Research, 2021, 3(1): 013270.

    [131] Dombi P, Pápa Z, Vogelsang J, et al. Strong-field nano-optics [J]. Reviews of Modern Physics, 2020, 92(2): 025003.

    [132] Chergui M, Collet E. Photoinduced structural dynamics of molecular systems mapped by time-resolved X-ray methods [J]. Chemical Reviews, 2017, 117(16): 11025-11065.

    [133] Maiuri M, Garavelli M, Cerullo G. Ultrafast spectroscopy: State of the art and open challenges [J]. Journal of the American Chemical Society, 2020, 142(1): 3-15.

    [134] Guo Z, Wan Y, Yang M J, et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy [J]. Science, 2017, 356(6333): 59-62.

    [135] Nah S, Spokoyny B, Stoumpos C, et al. Spatially segregated free-carrier and exciton populations in individual lead halide perovskite grains [J]. Nature Photonics, 2017, 11(5): 285-288.

    [136] Schnedermann C, Lim J M, Wende T, et al. Sub-10 fs time-resolved vibronic optical microscopy [J]. The Journal of Physical Chemistry Letters, 2016, 7(23): 4854-4859.

    [137] Chen A J, Yuan X J, Li J J, et al. Label-free imaging of heme dynamics in living organisms by transient absorption microscopy [J]. Analytical Chemistry, 2018, 90(5): 3395-3401.

    [138] Dai Y F, Shen X J. Overview of development plan of chemistry theory and mechanism discipline [J]. Scientia Sinica Chimica, 2021, 51(5): 547-557.

    WANG Ye, ZHANG Song, ZHANG Bing. Femtosecond transient absorption spectroscopy and its applications[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 547
    Download Citation