• Photonics Research
  • Vol. 6, Issue 6, 530 (2018)
Houkai Chen1, Xiaojing Wu2, Yuquan Zhang1、*, Yong Yang3, Changjun Min1, Siwei Zhu2, Xiaocong Yuan1, Qiaoliang Bao4, and Jing Bu4、5
Author Affiliations
  • 1Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
  • 2Tianjin Union Medical Center, Tianjin 300121, China
  • 3Institute of Modern Optics, Nankai University, Tianjin 300071, China
  • 4College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
  • 5e-mail: jingbu@szu.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.000530 Cite this Article Set citation alerts
    Houkai Chen, Xiaojing Wu, Yuquan Zhang, Yong Yang, Changjun Min, Siwei Zhu, Xiaocong Yuan, Qiaoliang Bao, Jing Bu. Wide-field in situ multiplexed Raman imaging with superresolution[J]. Photonics Research, 2018, 6(6): 530 Copy Citation Text show less
    References

    [1] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [2] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006).

    [3] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [4] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [5] F. Chen, P. W. Tillberg, E. S. Boyden. Expansion microscopy. Science, 347, 543-548(2015).

    [6] R. J. Mallia, P. Z. McVeigh, C. J. Fisher, I. Veilleux, B. C. Wilson. Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes. Nanomedicine, 10, 89-101(2015).

    [7] S. Yang, B. Li, A. Akkus, O. Akkus, L. Lang. Wide-field Raman imaging of dental lesions. Analyst, 139, 3107-3114(2014).

    [8] P. Z. McVeigh, R. J. Mallia, I. Veilleux, B. C. Wilson. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo. J. Biomed. Opt., 18, 046011(2013).

    [9] R. J. Mallia, P. Z. McVeigh, I. Veilleux, B. C. Wilson. Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo. J. Biomed. Opt., 17, 076017(2012).

    [10] S. Hennig, V. Mönkemöller, C. Böger, M. Müller, T. Huser. Nanoparticles as nonfluorescent analogues of fluorophores for optical nanoscopy. ACS Nano, 9, 6196-6205(2015).

    [11] J. Ma, D. Ben-Amotz. Rapid micro-Raman imaging using fiber-bundle image compression. Appl. Spectrosc., 51, 1845-1848(1997).

    [12] H. R. Morris, C. C. Hoyt, P. Miller, P. J. Treado. Liquid crystal tunable filter Raman chemical imaging. Appl. Spectrosc., 50, 805-811(1996).

    [13] P. J. Treado, I. W. Levin, E. N. Lewis. High-fidelity Raman imaging spectrometry: a rapid method using an acousto-optic tunable filter. Appl. Spectrosc., 46, 1211-1216(1992).

    [14] Y. Hirano, A. Matsuda, Y. Hiraoka. Recent advancements in structured-illumination microscopy toward live-cell imaging. Microscopy, 64, 237-249(2015).

    [15] Q. Li, M. Reinig, D. Kamiyama, B. Huang, X. Tao, A. Bardales, J. Kubby. Woofer-tweeter adaptive optical structured illumination microscopy. Photon. Res., 5, 329-334(2017).

    [16] Z. Wang, S. Zong, L. Wu, D. Zhu, Y. Cui. SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem. Rev., 117, 7910-7963(2017).

    [17] Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, J. Zhao. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review. Biosens. Bioelectron., 94, 131-140(2017).

    [18] P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem., 1, 601-626(2008).

    [19] A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, K. Fujita. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc., 8, 677-692(2013).

    [20] H. Xu, C. Kan, C. Miao, C. Wang, J. Wei, Y. Ni, B. Lu, D. Shi. Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior. Photon. Res., 5, 27-32(2017).

    [21] H. Chen, S. Wang, Y. Zhang, Y. Yang, H. Fang, S. Zhu, X. Yuan. Structured illumination for wide-field Raman imaging of cell membranes. Opt. Commun., 402, 221-225(2017).

    [22] Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, J.-M. Hu. Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging. Anal. Chem., 88, 6115-6119(2016).

    [23] Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, J. Hu. Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging. Sci. Rep., 6, 19173(2016).

    [24] P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. Gustafsson. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods, 6, 339-342(2009).

    [25] K. D. Alexander, K. Skinner, S. Zhang, H. Wei, R. Lopez. Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate. Nano Lett., 10, 4488-4493(2010).

    CLP Journals

    [1] Min Liu, Wending Zhang, Fanfan Lu, Tianyang Xue, Xin Li, Lu Zhang, Dong Mao, Ligang Huang, Feng Gao, Ting Mei, Jianlin Zhao. Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy[J]. Photonics Research, 2019, 7(5): 526

    Houkai Chen, Xiaojing Wu, Yuquan Zhang, Yong Yang, Changjun Min, Siwei Zhu, Xiaocong Yuan, Qiaoliang Bao, Jing Bu. Wide-field in situ multiplexed Raman imaging with superresolution[J]. Photonics Research, 2018, 6(6): 530
    Download Citation