• Laser & Optoelectronics Progress
  • Vol. 51, Issue 5, 50001 (2014)
Lü Sheqin*, Li Chaoran, Wu Yuehao, Zhang Peiqing, Wang Xunsi, Shen Xiang, Zhang Wei, and Dai Shixun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.050001 Cite this Article Set citation alerts
    Lü Sheqin, Li Chaoran, Wu Yuehao, Zhang Peiqing, Wang Xunsi, Shen Xiang, Zhang Wei, Dai Shixun. Research Progress of Micro/nano-Optical Device Based on Chalcogenide Glass[J]. Laser & Optoelectronics Progress, 2014, 51(5): 50001 Copy Citation Text show less
    References

    [1] Y Cho, Y Choi, S Sohn. Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter [J]. Appl Phys Lett,2006, 89(5): 051102.

    [2] P B Catrysse, W Suh, S Fan, et al.. One-mode model for patterned metal layers inside integrated color pixels [J]. Opt Lett, 2004, 29(9): 974-976.

    [3] Y Kanamori, M Shimono, K Hane. Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates [J]. IEEE Photon Technol Lett, 2006, 18(20): 2126-2128.

    [4] B J Eggleton. Chalcogenide photonics: fabrication, devices and applications introduction [J]. Opt Express, 2010, 18(25): 26632-26634.

    [5] A Seddon. Chalcogenide glasses: a review of their preparation, properties and applications [J]. J Non-cryst Solids, 1995, 184: 44-50.

    [6] A Zakery, S Elliott. Optical properties and applications of chalcogenide glasses: a review [J]. J Non-Cryst Solids,2003, 330(1): 1-12.

    [7] N Carlie, J D Musgraves, B Zdyrko, et al.. Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges [J]. Opt Express,2010, 18(25): 26728-26743.

    [8] C Tsay, Y Zha, C B Arnold. Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides [J]. Opt Express,2010, 18(25): 26744-26753.

    [9] K Richardson, L Petit, N Carlie, et al.. Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors [J]. J Nonlinear Opt Phys, 2010, 19(1): 75-99.

    [10] G R Elliott, G S Murugan, J S Wilkinson, et al.. Chalcogenide glass microsphere laser [J]. Opt Express,2010, 18(25): 26720-26727.

    [11] X Gai, B Luther-Davies, T P White. Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000) [J]. Opt Express, 2012, 20(14): 15503-15515.

    [12] D D Hudson, E C Magi, A C Judge, et al.. Highly nonlinear chalcogenide glass micro/nanofiber devices: design, theory, and octave-spanning spectral generation [J]. Opt Commun, 2012, 2(85): 4660-4669.

    [13] D-I Yeom, E C Magi, M R Lamont, et al.. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires [J]. Opt Lett,2008, 33(7): 660-662.

    [14] C Grillet, C L C Smith, D Freeman, et al.. Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires [J]. Opt Express,2006, 14(3): 1070-1078.

    [15] A Feigel, Z Kotler, B Sfez, et al.. Chalcogenide glass-based three-dimensional photonic crystals [J]. Appl Phys Lett, 2000, 77(20): 3221-3223.

    [16] B Luther-Davies, D Freeman, Y Ruan, et al.. Chalcogenide glass photonic devices [C]. Lasers and Electro-Optics Society, 2004 LEOS 2004 The 17th Annual Meeting of the IEEE, 2004, 2: 921-922.

    [17] D Freeman, S Madden, B Luther-Davies. Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam [J]. Opt Express, 2005, 13(8): 3079-3086.

    [18] E C Magi, L Fu, D-I Yeom, et al.. Enhanced kerr non-linearity in sub-wavelength diameter As2Se3 chalcogenide fibre tapers [J]. Opt Express, 2007, 15(16): 10324-10329.

    [19] Q Zhang, M Li, Q Hao, et al.. Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices [J]. Opt Lett, 2010, 35(22): 3829-3831.

    [20] G R Elliott, D W Hewak, G S Murugan, et al.. Chalcogenide glass microspheres; their production, characterization and potential [J]. Opt Express, 2007, 15(26): 17542-17553.

    [21] C Grillet, S N Bian, E C Magi, et al.. Fiber taper coupling to chalcogenide microsphere modes [J]. Appl Phys Lett, 2008, 92(17): 171109.

    [22] D H Broaddus, M A Foster, I H Agha, et al.. Silicon-waveguide-coupled high-Q chalcogenide microspheres [J]. Opt Express, 2009, 17(8): 5998-6003.

    [23] L Mescia, P Bia, M De Sario, et al.. Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator [J]. Opt Express, 2012, 20(7): 7616-7629.

    [24] P Wang, M Ding, T Lee, et al.. Packaged chalcogenide microsphere resonator with high Q-factor [J]. Appl Phys Lett, 2013, 102(13): 131110.

    [25] J Hu, N Carlie, L Petit, et al.. Demonstration of chalcogenide glass racetrack microresonators [J]. Opt Lett, 2008, 33(8): 761-763.

    [26] J Hu, N Carlie, L Petit, et al.. Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: experiment and analysis [J]. J Lightwave Technol,2009, 27(23): 5240-5245.

    [27] F Al Tal, C Dimas, J Hu, et al.. Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source [J]. Opt Express, 2011, 19(13): 11951-11962.

    [28] Q Zhang, H Lin, B Jia, et al.. Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses [J]. Opt Express, 2010, 18 (7): 6885-6890.

    [29] M W Lee, C Grillet, C L Smith, et al.. Photosensitive post-tuning of chalcogenide photonic crystal waveguides [J]. Opt Express, 2010, 15(3): 1277-1285.

    [30] C Smith, C Grillet, S Tomljenovic-Hanic, et al.. Characterisation of chalcogenide 2D photonic crystal waveguides and nanocavities using silica fibre nanowires [J]. Physica B,2007, 394(2): 289-292.

    [31] K Suzuki, Y Hamachi, T Baba. Fabrication and characterization of chalcogenide glass photonic crystal waveguides [J]. Opt Express, 2009, 17(25): 22393-22400.

    [32] B Suthar, A K Nagar, A Bhargava. Slow light transmission in chalcogenide photonic crystal waveguide [J]. J Electronic Science and Technology, 2010, 8(1): 39-42.

    [33] K Suzuki, T Baba. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides [J]. Opt Express, 2010, 18(25): 26675-26685.

    [34] D Freeman, C Grillet, M W Lee, et al.. Chalcogenide glass photonic crystals [J]. Photonic Nanostruct, 2008, 6(1): 3-11.

    [35] E Nicoletti, G Zhou, B Jia, et al.. Observation of multiple higher-order stopgaps from three-dimensional chalcogenide glass photonic crystals [J]. Opt Lett, 2008, 33(20): 2311-2313.

    [36] Y Ruan, M-K Kim, Y-H Lee, et al.. Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography [J]. Appl Phys Lett, 2007, 90(7): 071102.

    [37] M W Lee, C Grillet, C Monat, et al.. Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities [J]. Opt Express, 2010, 18(25): 26695-26703.

    [38] Wu Pinghui, Cheng Bo, Liu Yanping, et al.. Research progress on optical microfibers and nanofibers [J]. Optical Communication Technology, 2012, 36(10): 32-34.

    [39] L Tong, R R Gattass, J B Ashcom, et al.. Subwavelength-diameter silica wires for low-loss optical wave guiding [J]. Nature,2003, 426(6968): 816-819.

    [40] L Tong, J Lou, Z Ye, et al.. Self-modulated taper drawing of silica nanowires [J]. Nanotechnology, 2005, 16(9): 1445-1448.

    [41] L Tong, L Hu, J Zhang, et al.. Photonic nanowires directly drawn from bulk glasses [J]. Opt Express, 2006, 14(1): 82-87.

    [42] J M Ward, D G OShea, B J Shortt, et al.. Heat-and-pull rig for fiber taper fabrication [J]. Rev Sci Instrum, 2006, 77(8): 083105.

    [43] L Shi, X Chen, H Liu, et al.. Fabrication of submicron-diameter silica fibers using electric strip heater [J]. Opt Express, 2006, 14(12): 5055-5060.

    [44] Dai Shixun, Yu Xingyan, Zhang Wei, et al.. Research progress of chalcogenide glass photonic crystal fiber [J]. Laser & Optoelectronics Progress, 2011, 48(9): 090602.

    [45] Chen Yongzhu, Xu Wencheng, Cui Hu, et al.. The effect of fiber dispersion on generation of supercontinuum [J]. Acta Optica Sinica, 2003, 23(3): 297-301.

    [46] G Vienne, A Coillet, P Grelu, et al.. Demonstration of a reef knot microfiber resonator [J]. Opt Express, 2009, 17(8): 6224-6229.

    [47] Dai Shixun, Lu Laiwei, Tao Guangming, et al.. Research progress of glass microspheres for optical microcavity [J]. Laser & Optoelectronics Progress, 2012, 49(8): 080001.

    [48] C Grillet, S Ning Bian, E Magi, et al.. Laser induced generation of chalcogenide microspheres and their characterisation [C]. Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology. 2008. 1-2.

    [49] P Wang, G S Murugan, G Brambilla, et al.. Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface [J]. IEEE Photon Technol Lett, 2012, 24(13): 1103-1105.

    [50] S John. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys Rev Lett, 1987, 58(23): 2486-2489.

    [51] E Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys Rev Lett, 1987, 58(20): 2059-2062.

    [52] Kuai Sulan, Zhang Yuzhi, Hu Xingfang. Band structure,application and preparation of photonic crystal [J].Journal of Inorganic Materials,2001, 16(2): 193-199.

    [53] P S J Russell, T A Birks, J C Knight. Photonic crystal fibers: U. S, 6243522 [P]. 2001-06-05.

    [54] R D Meade, A Devenyi, J Joannopoulos, et al.. Novel applications of photonic band gap materials: low-loss bends and high Q cavities [J]. J Appl Phys, 1994, 75(9): 4753-4755.

    [55] M Ebnali-Heidari, H Saghaei, C Monat, et al.. Four-wave mixing based mid-span phase conjugation using slow light engineered chalcogenide and silicon photonic crystal waveguides [C]. Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC), 2011 Conference on and 12th European Quantum Electronics Conference, IEEE, 2011. 1

    [56] C Monat, M Spurny, C Grillet, et al.. Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides [J]. Opt Lett, 2011, 36(15): 2818-2820.

    [57] Zhang Liang, Zhang Wei, Nie Qiuhua, et al.. Research progress of two-dimension photonic crystal waveguide [J]. Laser & Optoelectronics Progress, 2013, 50(3): 030008.

    [58] M Spurny, L O′Faolain, D A Bulla, et al.. Fabrication of low loss dispersion engineered chalcogenide photonic crystals [J]. Opt Express,2011, 19(3): 1991-1996.

    [59] E Nicoletti, D Bulla, B Luther-Davies, et al.. Planar defects in three-dimensional chalcogenide glass photonic crystals [J]. Opt Lett, 2011, 36(12): 2248-2250.

    [60] B Suthar, V Kumar, K S Singh, et al.. Tuning of photonic band gaps in one dimensional chalcogenide based photonic crystal [J]. Opt Commun, 2012, 285(6): 1505-1509.

    CLP Journals

    [1] Wang Cui, Dai Shixun, Zhang Peiqing, Zhang Bin, Wang Xunsi, Shen Xiang, Hou Jing, Wang Rongping, Tao Guangming. Research Progress of Infrared Supercontinuum Generation in Chalcogenide Glass Fibers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 30001

    [2] Li Peng, Zhang Cheng, Ni Yuan, Yue Wencheng, Wang Guan, Fu Qiang. Study of Lasing Characteristics in Strongly Coupled Nano-Cavity Array[J]. Laser & Optoelectronics Progress, 2015, 52(1): 11401

    [3] Wang Minghuan, Tang Jun, Guo Zebin, Shang Chenglong, Zhang Tian′en, Lei Longhai, Guo Hao, Liu Jianhua, Xue Chenyang, Zhang Wendong, Liu Jun. Optical Model Non-Reciprocity of Microsphere Resonator Excited by Tapered Fiber for Resonator Optic Gyroscope[J]. Chinese Journal of Lasers, 2015, 42(3): 305007

    [4] Shang Chenglong, Tang Jun, Pi Hailong, Zhang Wei, Xie Chengfeng, Zhang Tian′en, Lei Longhai, Wang Minghuan, Guo Zebin, Zhang Binzhen, Liu Jun, Xue Chenyang, Zhang Wendong. Temperature Coefficient of High-Q Microsphere Cavity[J]. Chinese Journal of Lasers, 2015, 42(3): 302005

    Lü Sheqin, Li Chaoran, Wu Yuehao, Zhang Peiqing, Wang Xunsi, Shen Xiang, Zhang Wei, Dai Shixun. Research Progress of Micro/nano-Optical Device Based on Chalcogenide Glass[J]. Laser & Optoelectronics Progress, 2014, 51(5): 50001
    Download Citation