• Laser & Optoelectronics Progress
  • Vol. 57, Issue 15, 150003 (2020)
Chenyu Guo, Doudou Wang*, and Changlong Mu
Author Affiliations
  • College of Science, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
  • show less
    DOI: 10.3788/LOP57.150003 Cite this Article Set citation alerts
    Chenyu Guo, Doudou Wang, Changlong Mu. Progress on Optical Fiber Sensors Based on Graphene/Graphene Oxide[J]. Laser & Optoelectronics Progress, 2020, 57(15): 150003 Copy Citation Text show less
    References

    [1] Deng D S, Feng W L, Wei J W et al. Trace hydrogen sulfide gas sensor based on tungsten sulfide membrane-coated thin-core fiber modal interferometer[J]. Applied Surface Science, 423, 492-497(2017).

    [2] Wang H P, Zhou Z, Wang Q et al. Strain transfer errors of optical fiber sensors embedded in asphalt pavement[J]. Optics and Precision Engineering, 23, 1499-1507(2015).

    [3] Wang C, Liu Q W, Chen D et al. Monitoring pipeline leakage using fiber-optic distributed acoustic sensor[J]. Acta Optica Sinica, 39, 1006005(2019).

    [4] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [5] Hurch S, Nolan H, Hallam T et al. Inkjet-defined field-effect transistors from chemical vapour deposited graphene[J]. Carbon, 71, 332-337(2014).

    [6] Tien H W, Huang Y L, Yang S Y et al. The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films[J]. Carbon, 49, 1550-1560(2011).

    [7] Xu M S, Gao Y, Yang X et al. Unique synthesis of graphene-based materials for clean energy and biological sensing applications[J]. Chinese Science Bulletin, 57, 3000-3009(2012).

    [8] Yousefi N, Sun X Y, Lin X Y et al. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding[J]. Advanced Materials, 26, 5480-5487(2014).

    [9] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 332, 1291-1294(2011).

    [10] Obraztsov P A, Rybin M G, Tyurnina A V et al. Broadband light-induced absorbance change in multilayer graphene[J]. Nano Letters, 11, 1540-1545(2011).

    [11] Jablan M, Buljan H. Solja i M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 80, 245435(2009).

    [12] Wang B, Wolfe D E, Terrones M et al. Electro-graphitization and exfoliation of graphene on carbon nanofibers[J]. Carbon, 117, 201-207(2017).

    [13] Ubeid M F, Shabat M M. Numerical investigation of a D-shape optical fiber sensor containing graphene[J]. Applied Physics A, 118, 1113-1118(2015).

    [14] Bi W H, Wang Y Y, Fu G W et al. Study on the electro-optic modulation properties of graphene-coated hollow optical fiber[J]. Acta Physica Sinica, 65, 047801(2016).

    [15] Bolotin K I, Sikes K J, Jiang Z et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 146, 351-355(2008).

    [16] Bi W H, Ma J Y, Yang K L et al. Graphene-based optical fiber and its applications[J]. Laser & Optoelectronics Progress, 54, 040002(2017).

    [17] Kuzmenko A B, van Heumen E, Carbone F et al. Universal optical conductance of graphite[J]. Physical Review Letters, 100, 117401(2008).

    [18] Avouris P. Graphene: electronic and photonic properties and devices[J]. Nano Letters, 10, 4285-4294(2010).

    [19] Ni Z H, Yu T, Lu Y H et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening[J]. ACS Nano, 2, 2301-2305(2008).

    [20] Hintermann T, Muellen K, Feng X L et al. -11-19(2015).

    [21] Novoselov K S, Morozov S V. Mohinddin T M G, et al. Electronic properties of graphene[J]. Physica Status Solidi (B), 244, 4106-4111(2007).

    [22] Hanson G W. Dyadic Green's functions and guided surface wavesfor a surface conductivity model of graphene[J]. Journal of Applied Physics, 103, 064302(2008).

    [23] Liu Z Y, Cao H Q, Xu F et al. Graphene nanoelectromechanical system and its integration with optical fiber[J]. Laser & Optoelectronics Progress, 56, 110006(2019).

    [24] Stankovich S, Piner R D, Nguyen S T et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon, 44, 3342-3347(2006).

    [25] Stankovich S, Dikin D A, Piner R D et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 45, 1558-1565(2007).

    [26] Kaczmarek H, Podgórski A. Photochemical and thermal behaviours of poly(vinyl alcohol)/graphite oxide composites[J]. Polymer Degradation and Stability, 92, 939-946(2007).

    [27] Zhang L, Liang J J, Huang Y et al. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation[J]. Carbon, 47, 3365-3368(2009).

    [28] Eda G, Chhowalla M. Graphene-based composite thin films for electronics[J]. Nano Letters, 9, 814-818(2009).

    [29] Sun X M, Liu Z, Welsher K et al. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Research, 1, 203-212(2008).

    [30] Chen Z, Umar A, Wang S W et al. Supramolecular fabrication of multilevel graphene-based gas sensors with high NO2 sensibility[J]. Nanoscale, 7, 10259-10266(2015).

    [31] Lerf A, He H Y, Forster M et al. Structure of graphite oxide revisited[J]. Journal of Physical Chemistry B, 102, 4477-4482(1998).

    [32] Dikin D A, Stankovich S, Zimney E et al. Preparation and characterization of graphene oxide paper[J]. Nature, 448, 457-460(2007).

    [35] Hummers W S. Jr, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 80, 1334-1339(1958).

    [36] Yu R E, Zhu X J, Hu J B et al. Preparation of graphene oxide and its modification effect on base asphalt[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 27, 256-264(2019).

    [37] Yasin M, Harun S W, Hamzah A. Fiber optic sensors[M]. New York: Marcel Dekker Inc., 5(2012).

    [38] Wu X Q, Tong L M. Optical microfibers and nanofibers[J]. Nanophotonics, 2, 407-428(2013).

    [39] Liu X L. Research on fiber gas sensors based ongraphene oxide[D]. Chengdu: University of Electronic Science and Technology of China(2017).

    [40] Yao B C, Wu Y, Chen Y et al. 8421: 8421CD(2012).

    [41] Yao B C, Wu Y, Gong Y et al. A highly sensitive and fast response molecular sensor based on graphene coated microfiber[J]. Proceedings of SPIE, 8421, 842186(2012).

    [42] Ahmad H, Rahman M T. Sakeh S N A , et al. Humidity sensor based on microfiber resonator with reduced graphene oxide[J]. Optik International Journal for Light & Electron Optics, 127, 3158-3161(2015).

    [43] Yan S C, Zheng B C, Chen J H et al. Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator[J]. Applied Physics Letters, 107, 053502(2015).

    [44] Sheng M M, Fan P C, Yu B et al. Ammonia sensor based on microfiber modal interferometer and graphene film[J]. Chinese Journal of Quantum Electronics, 34, 379-384(2017).

    [45] Wang M Q, Li D, Wang R D et al. PDMS-assisted graphene microfiber ring resonator for temperature sensor[J]. Optical and Quantum Electronics, 50, 132(2018).

    [46] Wang S, Feng M Z, Wu S et al. Highly sensitive temperature sensor based on gain competition mechanism using graphene coated microfiber[J]. IEEE Photonics Journal, 10, 6802008(2018).

    [47] Ortigosablanch A, Knight J C, Wadsworth W J et al. Highly birefringent photonic crystal fibers[J]. Optics Letters, 25, 1325-1327(2000).

    [48] Gong Y, Zhao T, Rao Y J et al. All-fiber curvature sensor based on multimode interference[J]. IEEE Photonics Technology Letters, 23, 679-681(2011).

    [49] Tan Y C, Tou Z, Chow K K et al. Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications[J]. Optics Express, 23, 31286-31294(2015).

    [50] Rifat A A, Mahdiraji G, Chow D M et al. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core[J]. Sensors, 15, 11499-11510(2015).

    [51] Rifat A A, Mahdiraji G A, Ahmed R et al. Copper-graphene-based photonic crystal fiber plasmonic biosensor[J]. IEEE Photonics Journal, 8, 4800408(2016).

    [52] Feng X, Yang X Z, Huang G J et al. Hydrogen sulfide sensor based on copper ion deposited graphene-coated conical photonic crystal fiber[J]. Acta Photonica Sinica, 46, 0923002(2017).

    [53] Huang G J, Peng Z Q, Yang X Z et al. Sensing performance of hydrogen sulfide gas based on Cu/graphene composite membrane coated photonic crystal fiber[J]. Acta Photonica Sinica, 48, 0306001(2019).

    [54] Liu M, Feng D J, Feng W L. Properties of hydrogen sulfide gas sensor based on no-core-multimode-no-core fiber structure[J]. Acta Optica Sinica, 39, 1006007(2019).

    [55] Wang J F. Interferometric sensor based on photonic crystal fiber[D]. Nanjing: Nanjing University of Posts and Telecommunications, 32-35(2018).

    [56] Dash J N, Jha R. On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance[J]. Plasmonics, 10, 1123-1131(2015).

    [57] Wu Y, Yao B C, Cao X L et al. Highly sensitive chemical gas sensor based on graphene Deposited D-shaped-fiber. [C]∥CLEO: 2015, May 10-15, 2015, San Jose, California. Washington, D. C. : OSA, AF2J, 2(2015).

    [58] Nayak J K, Jha R. Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing[J]. Applied Optics, 56, 3510-3517(2017).

    [59] Tong K, Wang F C, Wang M T et al. D-shaped photonic crystal fiber biosensor based on silver-graphene[J]. Optik, 168, 467-474(2018).

    [60] Wang L. Study on the properties of graphene modified D type multimode fiber refractive index sensor[D]. Qinhuangdao: Yanshan University(2018).

    [61] Nair R, Blake P, Grigorenko A et al. Fine structure constant defines visual transparency of graphene[J]. Science, 320, 1308(2008).

    [62] Wu Z Q, Chen X D, Zhu S B et al. Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film[J]. IEEE Sensors Journal, 13, 777-782(2013).

    [63] Guo X W. Surface plasmon resonance based biosensor technique: a review[J]. Journal of Biophotonics, 5, 483-501(2012).

    [64] Fan Z K, Zhang Z C, Wang B Z et al. Research progress of photonic crystal fiber refractive indexsensors based on surface plasmon resonance effect[J]. Laser & Optoelectronics Progress, 56, 070004(2019).

    [65] Kim J A, Hwang T, Dugasani S R et al. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications[J]. Sensors and Actuators B: Chemical, 187, 426-433(2013).

    [66] Kim J A, Kulkarni A, Kang J M et al. Evaluation of multi-layered graphene surface plasmon resonance-based transmission type fiber optic sensor[J]. Journal of Nanoscience and Nanotechnology, 12, 5381-5385(2012).

    [67] Nayak J K, Parhi P, Jha R. Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor[J]. Sensors and Actuators B: Chemical, 221, 835-841(2015).

    [68] Nayak J K, Parhi P, Jha R. Experimental and theoretical studies on localized surface plasmon resonance based fiber optic sensor using graphene oxide coated silver nanoparticles[J]. Journal of Physics D, 49, 285101(2016).

    [69] Yang X C, Lu Y, Liu B L et al. Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance[J]. Plasmonics, 12, 489-496(2017).

    [70] Patrick H J, Williams G M, Kersey A D et al. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination[J]. IEEE Photonics Technology Letters, 8, 1223-1225(1996).

    [71] Chryssis A N, Lee S M, Lee S B et al. High sensitivity evanescent field fiber Bragg grating sensor[J]. IEEE Photonics Technology Letters, 17, 1253-1255(2005).

    [72] Jiang B Q, Lu X, Gan X T et al. Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region[J]. Optics Letters, 40, 3994-3997(2015).

    [73] Zhang A Q, Wu Y, Yao B C et al. Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing[J]. Photonic Sensors, 5, 84-90(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ150120000029UqXtZw

    [74] Morales-Narváez E, Merkoçi A. Graphene oxide as an optical biosensing platform[J]. Advanced Materials, 24, 3298-3308(2012).

    [75] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Journal of Beijing Technology & Business University, 424, 824-830(2003).

    [76] Shang J Z, Ma L, Li J W et al. The origin of fluorescence from graphene oxide[J]. Scientific Reports, 2, 792(2012).

    [77] Sridevi S, Vasu K S, Jayaraman N et al. Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer[J]. Sensors & Actuators B Chemical, 195, 150-155(2014).

    [78] Shabaneh A A, Girei S H, Arasu P T et al. Reflectance response of tapered optical fiber coated with graphene oxide nanostructured thin film for aqueous ethanol sensing[J]. Optics Communications, 331, 320-324(2014).

    [79] Dash J N, Jha R. Temperature insensitive PCF interferometer coated with graphene oxide tip sensor[J]. IEEE Photonics Technology Letters, 28, 1006-1009(2016).

    [80] Vasu S A S, Asokan S, Sood A K. Sensitive detection of C-reactive protein using optical fiber Bragg gratings[J]. Biosensors and Bioelectronics, 65, 251-256(2015).

    [81] Lesiak P, Sobotka P, Bieda M et al. Innovative UV sensor based on highly birefringent fiber covered by graphene oxide[J]. Photonics Letters of Poland, 7, 124-126(2015).

    [82] Wang Y Q, Shen C Y, Lou W M et al. Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide[J]. Applied Physics Letters, 109, 031107(2016).

    [83] Gao S B, Qiu H W, Zhang C et al. Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection[J]. RSC Advances, 6, 15808-15815(2016).

    [84] Yu C B, Wu Y, Liu X L et al. Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide[J]. Sensors and Actuators B: Chemical, 244, 107-113(2017).

    [85] Mustapha Kamil Y. Abu Bakar M H, Yaacob M H, et al. Dengue E protein detection using a graphene oxide integrated tapered optical fiber sensor[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 070004(2019).

    [86] Hernaez M, Mayes A G, Melendiespina S. Graphene oxide in lossy mode resonance-based optical fiber sensors for ethanol detection[J]. Sensors, 18, 58(2017).

    [87] Divagar M, Gowri A, John S et al. Graphene oxide coated U-bent plastic optical fiber based chemical sensor for organic solvents[J]. Sensors and Actuators B: Chemical, 262, 1006-1012(2018).

    [88] Wu P, Hu X, Zhang J et al. Research status and development graphene devices using silicon as the substrate[J]. Acta Physica Sinica, 66, 218102(2017).

    [89] Li X S, Cai W W, An J et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 324, 1312-1314(2009).

    [90] Wang Z G, Chen Y F, Li P J et al. Flexible graphene-based electroluminescent devices[J]. ACS Nano, 5, 7149-7154(2011).

    [91] Yi W Q. Study of high quality subwavelength microfiber fabrication process and microknot gas sensing property[D]. Chengdu: University of Electronic Science and Technology of China(2013).

    [92] Yang C X. -06-02[P]. Gui L L. Method for depositing light-induced graphene to the end of an optical fiber: CN200910242484.(2010).

    [93] Yao B C, Wu Y, Jia L et al. Mode field distribution of optical transmission along microfiber affected by CNT films with complex refraction index[J]. Journal of the Optical Society of America B-Optical Physics, 29, 891-895(2012).

    [94] Yao B C, Wu Y, Cheng Y et al. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide[J]. Sensors and Actuators B: Chemical, 194, 142-148(2014).

    [95] Wu Y, Yao B C, Zhang A Q et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing[J]. Optics Letters, 39, 1235-1237(2014).

    [96] Yao B C, Wu Y, Wang Z G et al. Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach-Zehnder interferometer[J]. Optics Express, 21, 29818-29826(2013).

    [97] Sun X H. Theoretical and experimental investigation on the surface modified micro-nano optical fiber based temperature and gas sensors[D]. Wuhan: Huazhong University of Science and Technology(2016).

    [98] Tan T, Yuan Z Y, Chen Y F et al. Graphene-based fiber functional sensors and laser devices[J]. Laser & Optoelectronics Progress, 56, 170613(2019).

    Chenyu Guo, Doudou Wang, Changlong Mu. Progress on Optical Fiber Sensors Based on Graphene/Graphene Oxide[J]. Laser & Optoelectronics Progress, 2020, 57(15): 150003
    Download Citation