• Laser & Optoelectronics Progress
  • Vol. 58, Issue 17, 1700005 (2021)
Junbin Huang1,*, Peng Ding1,2, and Jinsong Tang2
Author Affiliations
  • 1Department of Weapon Engineering, Naval University of Engineering, Wuhan , Hubei 430033, China
  • 2College of Electronic Engineering, Naval University of Engineering, Wuhan , Hubei 430033, China
  • show less
    DOI: 10.3788/LOP202158.1700005 Cite this Article Set citation alerts
    Junbin Huang, Peng Ding, Jinsong Tang. Progress in Fabrication, Demodulation and Application of Weak-Reflection Fiber Bragg Grating Array[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1700005 Copy Citation Text show less
    References

    [1] Ye X W, Yi T H, Su Y H et al. Strain-based structural condition assessment of an instrumented arch bridge using FBG monitoring data[J]. Smart Structures and Systems, 20, 139-150(2017).

    [2] Ye X W, Ding P, Zhou C et al. Monitoring of metro-tunnel freezing construction using fiber sensing technology[J]. Journal of Zhejiang University (Engineering Science), 47, 1072-1080(2013).

    [3] Zhang Y J, Jia B B, Huang B K et al. Research on mine collapse monitoring based on distributed grating sensor network[J]. Laser & Infrared, 42, 319-323(2012).

    [4] Sahota J K, Gupta N, Dhawan D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review[J]. Optical Engineering, 59, 060901(2020).

    [5] Zhao Y, Hu X G, Hu S et al. Applications of fiber-optic biochemical sensor in microfluidic chips: a review[J]. Biosensors and Bioelectronics, 166, 112447(2020).

    [6] Grattan K T V, Sun T. Fiber optic sensor technology: an overview[J]. Sensors and Actuators A: Physical, 82, 40-61(2000).

    [7] Liao Y B, Yuan L B, Tian Q et al. The 40 years of optical fiber sensors in China[J]. Acta Optica Sinica, 38, 0328001(2018).

    [8] Juarez J C, Maier E W, Choi K N et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 23, 2081-2087(2005).

    [9] Bernini R, Minardo A, Testa G et al. Dynamic strain measurements on a cantilever beam using stimulated Brillouin scattering[J]. Smart Materials and Structures, 19, 045024(2010).

    [10] Lin G B. Interferometric fiber devices and their applications in optical fiber communications and sensors[D](2013).

    [11] Su J. Research on characteristics of characteristic wavelength of few mode fiber and its application in sensing[D](2016).

    [12] Yu H H, Zheng Y, Guo H Y et al. Research progress in online preparation techniques of fiber Bragg gratings on optical fiber drawing tower[J]. Journal of Functional Materials, 45, 12001-12005(2014).

    [13] Hnatovsky C, Grobnic D, Mihailov S J et al. High-temperature stable π-phase-shifted fiber Bragg gratings inscribed using infrared femtosecond pulses and a phase mask[J]. Optics Express, 26, 23550-23564(2018).

    [14] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 32, 647-649(1978).

    [15] Meltz G, Morey W W, Glenn W H et al. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 14, 823-825(1989).

    [16] Martinez A, Dubov M, Khrushchev I et al. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Electronics Letters, 40, 1170-1172(2004).

    [17] Sun Y Z, Yu C X, Lin J T et al. Experimental analysis of photoinduced absorption change in a boron-codoped germanosilicate preform based on the color-center model[J]. Journal of China Institute of Communications, 21, 45-49(2000).

    [18] Li J Z, Jiang D S. Hydrogen loading and fiber Bragg grating[J]. Chinese Journal of Materials Research, 20, 518-522(2006).

    [19] Askins C G, Tsai T E, Williams G M et al. Fiber Bragg reflectors prepared by a single excimer pulse[J]. Optics Letters, 17, 833-835(1992).

    [20] Archambault J L, Reekie L, Russell P J et al. High reflectivity and narrow bandwidth fibre gratings written by single excimer pulse[J]. Electronics Letters, 29, 28-29(1993).

    [21] Dong L, Archambault J L, Reekie L et al. Single pulse Bragg gratings written during fibre drawing[J]. Electronics Letters, 29, 1577-1578(1993).

    [22] Askins C G, Putnam M A, Williams G M et al. Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower[J]. Optics Letters, 19, 147-149(1994).

    [23] Rothhardt M, Chojetzki C, Mueller H R et al. High mechanical strength singel-pulse draw tower gratings[J]. Proceedings of SPIE, 5579, 127-135(2004).

    [24] Rothhardt M, Becker M, Chojetzki C et al. Strain sensor chains beyond 1000 individual fiber Bragg gratings[C], JThA53(2010).

    [25] Lindner E, Hartung A, Hoh D et al. Trends and future of fiber Bragg grating sensing technologies: tailored draw tower gratings (DTGs)[J]. Proceedings of SPIE, 9141, 91410X(2014).

    [26] Yang M H, Bai W, Guo H Y et al. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings[J]. Photonic Sensors, 6, 26-41(2016).

    [27] Guo H Y, Yu H H, Wu Y W et al. Preparation of photosensitive fibers for weak fiber Bragg grating arrays[J]. Physics Procedia, 48, 184-190(2013).

    [28] Guo H Y, Tang J G, Li X F et al. On-line writing identical and weak fiber Bragg grating arrays[J]. Chinese Optics Letters, 11, 030602(2013).

    [29] Zheng Y, Yu H H, Guo H Y et al. Analysis of the spectrum distortions of weak fiber Bragg gratings fabricated in-line on a draw tower by the phase mask technique[J]. Journal of Lightwave Technology, 33, 2670-2673(2015).

    [30] Guo H Y, Liu F, Yuan Y Q et al. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber[J]. Optics Express, 23, 4829-4838(2015).

    [31] Sun Q Z, Liu D M, Wo J H et al. Distributed sensor optical fiber as well as preparation device and method thereof[P].

    [32] Wang Y M, Gong J M, Dong B et al. A large serial time-division multiplexed fiber Bragg grating sensor network[J]. Journal of Lightwave Technology, 30, 2751-2756(2012).

    [33] Jiang P, Ma L N, Hu Z L et al. Low-crosstalk and polarization-independent inline interferometric fiber sensor array based on fiber Bragg gratings[J]. Journal of Lightwave Technology, 34, 4232-4239(2016).

    [34] Chen Z, Hefferman G, Wei T et al. Terahertz-range weak reflection fiber optic structures for sensing applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 246-251(2017).

    [35] Tokarev A V, Anchutkin G G, Varzhel S V et al. UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays[J]. Optics & Laser Technology, 89, 173-178(2017).

    [36] Monet F, Loranger S, Iezzi V L et al. The ROGUE: a novel, noise-generated random grating[J]. Optics Express, 27, 13895-13909(2019).

    [37] Elsmann T, Becker M, Olusoji O et al. Two-step-model of photosensitivity in cerium-doped fibers[J]. Optical Materials Express, 9, 1654-1666(2019).

    [38] Rao Y J[M]. Optical fiber technology(2006).

    [39] Wu J, Wu H P, Huang J B et al. Research progress in signal demodulation technology of fiber Bragg grating sensors[J]. Chinese Optics, 7, 519-531(2014).

    [40] Valente L C G, Braga A M B, Ribeiro A S et al. Time and wavelength multiplexing of fiber Bragg graing sensors using a commerical OTDR[J]. Proceedings of the IEEE, 151-154(2002).

    [41] Valente L C G, Braga A M B, Ribeiro A S et al. Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment[J]. IEEE Sensors Journal, 3, 31-35(2003).

    [42] Zhang W G, Kai G Y, Dong X Y et al. Theoretical and experimental study of fiber grating multi-point sensing[J]. Acta Optica Sinica, 24, 330-336(2004).

    [43] Dai Y B, Liu Y J, Leng J S et al. A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring[J]. Optics and Lasers in Engineering, 47, 1028-1033(2009).

    [44] Zhang M L, Sun Q Z, Wang Z et al. A large capacity sensing network with identical weak fiber Bragg gratings multiplexing[J]. Optics Communications, 285, 3082-3087(2012).

    [45] Wang X C, Yan Z J, Wang F et al. An OTDR and gratings assisted multifunctional fiber sensing system[J]. IEEE Sensors Journal, 15, 4660-4666(2015).

    [46] Wang Y M, Hu C C, Liu Q et al. High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry[J]. Acta Physica Sinica, 65, 204209(2016).

    [47] Han P, Li Z Y, Chen L et al. A high-speed distributed ultra-weak FBG sensing system with high resolution[J]. IEEE Photonics Technology Letters, 29, 1249-1252(2017).

    [48] Liu Q, Wang Y M, Li Z Y et al. High-speed interrogation system of multi-encoding weak FBGs based on FDML wavelength swept laser[J]. Optics & Laser Technology, 107, 54-58(2018).

    [49] Luo Z H, Guo H Y, Wen H Q et al. Interrogation system for a sensor array with 1310- nm band ultra-weak fiber Bragg gratings[J]. Optical Engineering, 52, 107101(2013).

    [50] Hu C Y, Wen H Q, Bai W et al. A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings[J]. Journal of Lightwave Technology, 32, 1406-1411(2014).

    [51] Zhang Y J, Xie X P, Bi W H et al. High-speed high-multiplexing distributed temperature sensor network based on weak-reflection fiber gratings[J]. Chinese Journal of Lasers, 40, 0405006(2013).

    [52] Cheng R, Xia L. Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection[J]. Optics Letters, 41, 5254-5257(2016).

    [53] Rohollahnejad J, Xia L, Cheng R et al. TDM interrogation of intensity-modulated USFBGs network based on multichannel lasers[J]. Optics Express, 25, 670-680(2017).

    [54] Zhang J, Yang L Z, Yang H H et al. A novel demodulation scheme for high precision quasi-distributed sensing system based on chaotic fiber laser[J]. Sensors and Actuators A: Physical, 233, 427-433(2015).

    [55] Arias A, Shlyagin M G, Miridonov S V et al. Phase-sensitive correlation optical time-domain reflectometer using quantum phase noise of laser light[J]. Optics Express, 23, 30347-30356(2015).

    [56] Yi H, Xia L, Xu J et al. A liquid-level sensing technique based on differential detection of correlation peaks from broadband chaos[J]. IEEE Photonics Journal, 9, 1-9(2017).

    [57] Ma L M, Ma C, Wang Y M et al. High-speed distributed sensing based on ultra weak FBGs and chromatic dispersion[J]. IEEE Photonics Technology Letters, 28, 1344-1347(2016).

    [58] Sartiano D, Sales S. Monitoring temperature and vibration in a long weak grating array with short-pulse generation using a compact gain-switching laser diode module[J]. Optics Express, 27, 38661-38669(2019).

    [59] Yuksel K, Wuilpart M, Moeyaert V et al. Optical frequency domain reflectometry: a review[C], 1-5(2009).

    [60] Ye F, Qian L, Liu Y et al. Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array[J]. IEEE Photonics Technology Letters, 20, 1488-1490(2008).

    [61] Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides[J]. Journal of Lightwave Technology, 11, 1377-1384(1993).

    [62] Yüksel K, Mégret P, Wuilpart M et al. A quasi-distributed temperature sensor interrogated by optical frequency-domain reflectometer[J]. Measurement Science and Technology, 22, 115204(2011).

    [63] Ye F, Zhang Y W, Qi B et al. Frequency-shifted interferometry: a versatile fiber-optic sensing technique[J]. Sensors, 14, 10977-11000(2014).

    [64] Qi B, Ye F, Qian L et al. Reflectometry based on a frequency-shifted interferometer using sideband interference[J]. Optics Letters, 38, 1083-1085(2013).

    [65] Zhang Y W, Ye F, Qi B et al. Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry[J]. Applied Optics, 55, 5526-5530(2016).

    [66] Guo H Y, Gnanapandithan A, Liu Y et al. Single-arm frequency-shifted interferometry using a bidirectional electro-optic modulator[J]. Journal of Lightwave Technology, 37, 1310-1316(2019).

    [67] Yang Q, Wang J Q, Fu X L et al. High-spatial resolution demodulation of weak FBGs based on incoherent optical frequency domain reflectometry using a chaotic laser[C], 994-998(2019).

    [68] Ou Y W, Zhou C M, Qian L et al. Large-capacity multiplexing of near-identical weak fiber Bragg gratings using frequency-shifted interferometry[J]. Optics Express, 23, 31484-31495(2015).

    [69] Ou Y W, Zhou C M, Qian L et al. Large WDM FBG sensor network based on frequency-shifted interferometry[J]. IEEE Photonics Technology Letters, 29, 535-538(2017).

    [70] Ou Y W, Cheng C F, Zhou C M et al. Synchronous reflectivity measurement of a weak fiber Bragg grating array using frequency-shifted interferometry[J]. IEEE Photonics Journal, 10, 1-9(2018).

    [71] Li Z Y, Sun W F, Wang H H et al. Research on the ultra-weak reflective fiber Bragg grating sensing technology based on optical frequency domain reflection technology[J]. Acta Optica Sinica, 35, 0806003(2015).

    [72] Gui X, Li Z Y, Wang F et al. Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity[J]. Optics Express, 25, 28112-28122(2017).

    [73] Sun Q Z, Ai F, Liu D M et al. M-OTDR sensing system based on 3D encoded microstructures[J]. Scientific Reports, 7, 41137(2017).

    [74] Wang J Y, Ai F, Cheng J W et al. High accurate and stable demodulation for 3-D encoded optical fiber sensing network[J]. IEEE Photonics Technology Letters, 30, 1657-1660(2018).

    [75] Cheng J W, Sun Q Z, Ai F et al. High-speed and high-resolution demodulation system for the hybrid WDM/FDM based fiber microstructure sensing network[J]. IEEE Photonics Journal, 10, 1-11(2018).

    [76] Ricchiuti A L, Hervás J, Barrera D et al. Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor[J]. IEEE Photonics Journal, 6, 1-10(2014).

    [77] Urick V J, McKinney J D, Williams K J[M]. Fundamentals of microwave photonics, 152-153(2017).

    [78] Pu T, Wen C H, Xiang P et al[M]. Principle and application of microwave photonics(2015).

    [79] Hervás J, Pousa C R F, Barrera D et al. An interrogation technique of FBG cascade sensors using wavelength to radio-frequency delay mapping[J]. Journal of Lightwave Technology, 33, 2222-2227(2015).

    [80] Xia L, Cheng R, Li W et al. Identical FBG-based quasi-distributed sensing by monitoring the microwave responses[J]. IEEE Photonics Technology Letters, 27, 323-325(2015).

    [81] Clement J, Torregrosa G, Hervás J et al. Interrogation of a sensor array of identical weak FBGs using dispersive incoherent OFDR[J]. IEEE Photonics Technology Letters, 28, 1154-1156(2016).

    [82] Zhou L, Li Z Y, Xiang N et al. High-speed demodulation of weak fiber Bragg gratings based on microwave photonics and chromatic dispersion[J]. Optics Letters, 43, 2430-2433(2018).

    [83] Liang X, Xiang N, Li Z Y et al. Precision dynamic sensing with ultra-weak fiber Bragg grating arrays by wavelength to frequency transform[J]. Journal of Lightwave Technology, 37, 3526-3531(2019).

    [84] Kersey A D, Dandridge A, Tveten A B et al. Overview of multiplexing techniques for interferometric fiber sensors[J]. Proceedings of SPIE, 0838, 184-193(1988).

    [85] Morey W W, Dunphy J R, Meltz G et al. Multiplexing fiber Bragg grating sensors[J]. Proceedings of SPIE, 1586, 216-224(1992).

    [86] Waagaard O H, Rønnekleiv E, Forbord S et al. Reduction of crosstalk in inline sensor arrays using inverse scattering[J]. Proceedings of SPIE, 7004, 70044Z(2008).

    [87] Waagaard O H, Rønnekleiv E, Forbord S et al. Suppression of cable induced noise in an interferometric sensor system[J]. Proceedings of SPIE, 7503, 75034Q(2009).

    [88] Guo H Y, Qian L, Zhou C M et al. Crosstalk and ghost gratings in a large-scale weak fiber Bragg grating array[J]. Journal of Lightwave Technology, 35, 2032-2036(2017).

    [89] Koo K P, Tveten A B, Dandridge A et al. Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers[J]. Applied Physics Letters, 41, 616-618(1982).

    [90] Dandridge A, Tveten A, Giallorenzi T et al. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier[J]. IEEE Journal of Quantum Electronics, 18, 1647-1653(1982).

    [91] Wang C, Shang Y, Liu X H et al. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings[J]. Optics Express, 23, 29038-29046(2015).

    [92] Zhang X P, Sun Z H, Shan Y Y et al. A high performance distributed optical fiber sensor based on Φ-OTDR for dynamic strain measurement[J]. IEEE Photonics Journal, 9, 1-12(2017).

    [93] Shang Y, Yang Y H, Wang C et al. Quasi-distributed acoustic sensing based on identical low-reflective fiber Bragg gratings[J]. Measurement Science and Technology, 28, 015202(2017).

    [94] Tong Y H, Li Z Y, Wang J Q et al. High-speed Mach-Zehnder-OTDR distributed optical fiber vibration sensor using medium-coherence laser[J]. Photonic Sensors, 8, 203-212(2018).

    [95] Li Z Y, Tong Y H, Fu X L et al. Simultaneous distributed static and dynamic sensing based on ultra-short fiber Bragg gratings[J]. Optics Express, 26, 17437-17446(2018).

    [96] Wu M S, Fan X Y, Liu Q W et al. Highly sensitive quasi-distributed fiber-optic acoustic sensing system by interrogating a weak reflector array[J]. Optics Letters, 43, 3594-3597(2018).

    [97] Zhou C M, Pang Y D, Qian L et al. Demodulation of a hydroacoustic sensor array of fiber interferometers based on ultra-weak fiber Bragg grating reflectors using a self-referencing signal[J]. Journal of Lightwave Technology, 37, 2568-2576(2019).

    [98] Muanenda Y, Faralli S, Oton C J et al. Dynamic phase extraction in high-SNR DAS based on UWFBGs without phase unwrapping using scalable homodyne demodulation in direct detection[J]. Optics Express, 27, 10644-10658(2019).

    [99] Ding P, Liu W, Gu H C et al. Demodulation of a weak fiber Bragg grating array using a fiber delay line[J]. Applied Optics, 59, 2325-2328(2020).

    [100] Zhu F, Zhang Y X, Xia L et al. Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array[J]. Journal of Lightwave Technology, 33, 4775-4780(2015).

    [101] Liu T, Wang F, Zhang X P et al. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse[J]. Optical Engineering, 56, 084104(2017).

    [102] Liu T, Wang F, Zhang X P et al. Interrogation of ultra-weak FBG array using double-pulse and heterodyne detection[J]. IEEE Photonics Technology Letters, 30, 677-680(2018).

    [103] Ren Z J, Cui K, Zhu R H et al. Efficient and compact inline interferometric fiber sensor array based on fiber Bragg grating and rectangular-pulse binary phase modulation[J]. IEEE Sensors Journal, 18, 9556-9561(2018).

    [104] Li W, Zhang Y J. Enhanced phase sensitive optical time-domain reflectometer vibration sensing system based on weak grating array[J]. Chinese Journal of Lasers, 45, 0810001(2018).

    [105] Wang F, Liu Y, Wei T et al. Polarization fading elimination for ultra-weak FBG array-based Φ-OTDR using a composite double probe pulse approach[J]. Optics Express, 27, 20468-20478(2019).

    [106] Shan Y Y, Ji W B, Dong X Y et al. An enhanced distributed acoustic sensor based on UWFBG and self-heterodyne detection[J]. Journal of Lightwave Technology, 37, 2700-2705(2019).

    [107] de Miguel S V, Jason J, Kurtoğlu D et al. Spectral shadowing suppression technique in phase-OTDR sensing based on weak fiber Bragg grating array[J]. Optics Letters, 44, 526-529(2019).

    [108] Wu M S, Fan X Y, Liu Q W et al. Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation[J]. Optics Letters, 44, 5969-5972(2019).

    [109] Ding P, Huang J B, Gu H C et al. Demodulation of weak fiber Bragg grating using a double square wave and B-spline wavelet[J]. Acta Photonica Sinica, 49, 0306002(2020).

    [110] Xu R Q, Guo H Y, Li W et al. Ultra-narrow linewidth random fiber laser based on all grating fiber[J]. Chinese Journal of Lasers, 43, 1201005(2016).

    [111] Popov S M, Butov O V, Chamorovski Y K et al. Narrow linewidth short cavity Brillouin random laser based on Bragg grating array fiber and dynamical population inversion gratings[J]. Results in Physics, 9, 806-808(2018).

    [112] Qin X Q, Fang Z J, Ying K et al. Narrow linewidth all-fiber ring filters[J]. Acta Optica Sinica, 38, 1006001(2018).

    [113] Gan W B, Li S, Li Z Y et al. Identification of ground intrusion in underground structures based on distributed structural vibration detected by ultra-weak FBG sensing technology[J]. Sensors, 19, 2160(2019).

    [114] Nan Q, Li S, Yao Y et al. A novel monitoring approach for train tracking and incursion detection in underground structures based on ultra-weak FBG sensing array[J]. Sensors, 19, 2666(2019).

    [115] Xin L P, Li Z Y, Gui X et al. Surface intrusion event identification for subway tunnels using ultra-weak FBG array based fiber sensing[J]. Optics Express, 28, 6794-6805(2020).

    [116] He J H, Zhang J C, Chen Y et al. Automatic land subsidence monitoring system based on weak-reflection fiber gratings[J]. Hydrogeology & Engineering Geology, 48, 146-153(2021).

    [117] Bai W, Yang M H, Dai J X et al. Novel polyimide coated fiber Bragg grating sensing network for relative humidity measurements[J]. Optics Express, 24, 3230-3237(2016).

    [118] Bai W, Yang M H, Hu C Y et al. Ultra-weak fiber Bragg grating sensing network coated with sensitive material for multi-parameter measurements[J]. Sensors, 17, 1509(2017).

    [119] Li S F, Yang Z Z, Cai T et al. Temperature monitoring system of energy storage battery based on ultra-weak reflectivity fiber Bragg grating[J]. Internet of Things Technologies, 10, 31-32(2020).

    [120] Luo Z H, Zhang Y, Zhang Y et al. Internal space temperature monitoring method for LAMOST based on ultra-weak fiber grating[J]. Transducer and Microsystem Technologies, 39, 10-13(2020).

    [121] Lavrov V S, Plotnikov M Y, Aksarin S M et al. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings[J]. Optical Fiber Technology, 34, 47-51(2017).

    [122] Zhang Y D, Huang J B, Gu H C et al. Research on underwater acoustic detection mechanism of weak reflective fiber Bragg grating hydrophone[J]. Ship Electronic Engineering, 38, 180-184(2018).

    [123] McMahon G W, Cielo P G. Fiber optic hydrophone sensitivity for different sensor configurations[J]. Applied Optics, 18, 3720-3722(1979).

    [124] Guo Z, Gao K, Yang H et al. 20-mm-diameter interferometric hydrophone towed array based on fiber Bragg gratings[J]. Acta Optica Sinica, 39, 1106003(2019).

    [125] Li H, Sun Q Z, Liu T et al. Ultra-high sensitive quasi-distributed acoustic sensor based on coherent OTDR and cylindrical transducer[J]. Journal of Lightwave Technology, 38, 929-938(2020).

    [126] Pang Y D. Research on key technology for ultrathin fiber-optic hydrophone based on draw tower fiber Bragg grating array[D](2020).

    [127] Ding P, Wu J, Kang D et al. Detection of acoustic wave direction using weak-reflection fiber Bragg gratings[J]. Chinese Journal of Lasers, 47, 0506002(2020).

    Junbin Huang, Peng Ding, Jinsong Tang. Progress in Fabrication, Demodulation and Application of Weak-Reflection Fiber Bragg Grating Array[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1700005
    Download Citation