• Acta Optica Sinica
  • Vol. 36, Issue 7, 729002 (2016)
Wang Mingjun1、2、*, Ke Xizheng1, Li Yingle3, and Wu Pengfei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201636.0729002 Cite this Article Set citation alerts
    Wang Mingjun, Ke Xizheng, Li Yingle, Wu Pengfei. Statistical Moment and Incoherent Component Ratio of Laser Beam Scattering from Targets with Arbitrary Shapes[J]. Acta Optica Sinica, 2016, 36(7): 729002 Copy Citation Text show less
    References

    [1] Wang Mingjun, Wu Zhensen, Li Yingle, et al.. Research progress on the laser range resolved Doppler imaging radar and its key technologies[J]. Laser & Infrared, 2009, 39(5): 464-467.

    [2] Dai Yongjiang. Laser radar technology[M]. Beijing: Publishing House of Electronics Industry, 2010.

    [3] Guo Huichao, Sun Huayan, Fan Youchen. Development status of range-gated laser active imaging technology under atmospheric conditions[J]. Laser & Optoelectronics Progress, 2013, 50(10): 100004.

    [4] Liu Zhengjun, Li Qi, Wang Qi. Target recognition of coherent ladar range image using feature selection[J]. Chinese J Lasers, 2013, 40(8): 0814003.

    [5] Wu Z S, Cui S M. Bistatic scattering by arbitrarily shaped objects with rough surface at optical and infrared frequencies[J]. Inter J Infrared Mill Wave, 1992, 13(4): 537-549.

    [6] Sanchez-Gil J A, Nieto-Vesperinas M. Light scattering from random rough dielectric surfaces[J]. J Opt Soc Am A, 1991, 8(8): 1270-1286.

    [7] Tsang L, Kong J A, Ding K H. Scattering of electromagnetic waves: Theories and applications[M]. New York: Wiley Interscience, 2000.

    [8] Wei Guanghui, Yang Peigen. Application of laser technology in weapon industry[M]. Beijing: Publishing House of Ordnance Industry, 1995.

    [9] Beck S M, Buck J R, Buell W F, et al.. Synthetic-aperture imaging laser radar: Laboratory demonstration and signal processing[J]. Appl Opt, 2005, 44(35): 7621-7629.

    [10] Gschwendtner A B, Keicher W E. Development of coherent laser radar at Lincoln Laboratory[J]. Lincoln Laboratory Journal, 2000, 12(2): 383-396.

    [11] Gouesbet G. Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres[J]. J Opt Soc Am A, 1999, 16(7): 1641-1650.

    [12] Zimmermann E, Dndliker R, Souli N, et al.. Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach[J]. J Opt Soc Am A, 1995, 12(2): 398-403.

    [13] Li R X, Han X E, Shi L J, et al.. Debye series for Gaussian beam scattering by a multilayered sphere[J]. Appl Opt, 2007, 46(21): 4804-4812.

    [14] Wang M J, Zhang H Y, Liu G S, et al.. Gaussian beam scattering by a rotationally uniaxial anisotropic sphere[J]. J Opt Soc Am A, 2012, 29(11): 2376-2380.

    [15] Wang M J, Zhang H Y, Liu G S, et al.. Reflection and transmission of Gaussian beam by a uniaxial anisotropic slab[J]. Opt Express, 2014, 22(3): 3705-3711.

    [16] Collin R E. Scattering of an incident Gaussian beam by a perfectly conducting rough surface[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(1): 70-74.

    [17] Wang M J, Wu Z S, Li Y L. Investigation on the scattering characteristics of Gaussian beam from two dimensional dielectric rough surfaces based on the Kirchhoff approximation[J]. PIER B, 2008, 4: 223-235.

    [18] Basu S, Hyde M W, Cusumano S J, et al.. Examining the validity of using a Gaussian Schell-model source to model the scattering of a fully coherent Gaussian beam from a rough impedance surface[J]. Opt Eng, 2013, 52(3): 038001.

    [19] Chen Hui. Scattering of Gaussian beam by object with rough surface and its application on laser one-dimensional range profile[D]. Xi′an: Xidian University, 2004.

    [20] Briers J D. Laser Doppler and time-varying speckle: A reconciliation[J]. J Opt Soc Am A, 1996, 13(2): 345-350.

    [21] Gu Z H. High-order correlations from rough-surface scattering[J]. Appl Opt, 2004, 43(15): 3061-3065.

    [22] Wang Mingjun, Wu Zhensen, Li Yingle, et al.. The fourth order moment statistical characteristic of the laser pulse scattering on random rough surface[J]. Acta Physica Sinica, 2009, 58(4): 2390-2396.

    [23] Zhang G, Wu Z S. Fluctuation correlation of the scattered intensity from two-dimensional rough surfaces[J]. Opt Express, 2012, 20(2): 1491-1502.

    [24] Goodman J W. Statistical optics[M]. New York: Wiley Interscience, 1985.

    [25] Guo Guanjun, Shao Yun. Rough surfaces induced speckle effects on detection performance of pulsed laser radar[J]. Acta Physica Sinica, 2004, 53(7): 2089-2093.

    [26] Wang Mingjun, Li Yingle, Wu Zhensen, et al.. The second order statistical characteristic of mean square and correlation function for laser beam scattering fields from two-dimensional rough surface[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(7): 844-851.

    [27] Xu Qian, Zhou Yu, Sun Jianfeng, et al.. Analysis of integrated speckle receiving characteristics based on synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2014, 34(3): 0328002.

    [28] Goodman J W. Speckle phenomena in optics: Theory and application[M]. Colorado: Robert & Company Publishers, 2007.

    [29] Zhang Zhuokui, Chen Huichan. Stochastic process[M]. Xi′an: Xidian University Press, 2003.

    Wang Mingjun, Ke Xizheng, Li Yingle, Wu Pengfei. Statistical Moment and Incoherent Component Ratio of Laser Beam Scattering from Targets with Arbitrary Shapes[J]. Acta Optica Sinica, 2016, 36(7): 729002
    Download Citation