• Matter and Radiation at Extremes
  • Vol. 6, Issue 2, 026902 (2021)
Qianrui Liu1, Junyi Li2, and Mohan Chen1、a)
Author Affiliations
  • 1CAPT, HEDPS, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
  • 2School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People’s Republic of China
  • show less
    DOI: 10.1063/5.0030123 Cite this Article
    Qianrui Liu, Junyi Li, Mohan Chen. Thermal transport by electrons and ions in warm dense aluminum: A combined density functional theory and deep potential study[J]. Matter and Radiation at Extremes, 2021, 6(2): 026902 Copy Citation Text show less
    References

    [1] T. Guillot. Interiors of giant planets inside and outside the solar system. Science, 286, 72-77(1999).

    [2] B. Holst, A. Becker, N. Nettelmann et al. Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2). Astrophys. J., 750, 52(2012).

    [3] F. Wesemael, M. P. Savedoff, H. M. Van Horn et al. Atmospheres for hot, high-gravity stars. I-Pure hydrogen models. Astrophys. J., Suppl. Ser., 43, 159(1980).

    [4] J. Daligault, S. Gupta. Electron-ion scattering in dense multi-component plasmas: Application to the outer crust of an accreting neutron star. Astrophys. J., 703, 994-1011(2009).

    [5] R. LeToullec, D. Hausermann, P. Loubeyre et al. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature, 383, 702-704(1996).

    [6] W. J. Nellis, S. T. Weir, A. C. Mitchell. Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett., 76, 1860-1863(1996).

    [7] W. J. Nellis. Dynamic compression of materials: Metallization of fluid hydrogen at high pressures. Rep. Prog. Phys., 69, 1479-1580(2006).

    [8] R. Cauble, L. B. Da Silva, T. S. Perry et al. Absolute measurements of the equations of state of low-Z materials in the multi-Mbar regime using laser-driven shocks. Phys. Plasmas, 4, 1857-1861(1997).

    [9] J. Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933-4024(1995).

    [10] W. Kohn, P. Hohenberg. Inhomogeneous electron gas. Phys. Rev., 136, B864(1964).

    [11] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133(1965).

    [12] Y. A. Wang, E. A. Carter. Orbital-free kinetic-energy density functional theory. Theoretical Methods in Condensed Phase Chemistry, 117-184(2002).

    [13] D. M. Ceperley, E. L. Pollock. Simulation of quantum many-body systems by path-integral methods. Phys. Rev. B, 30, 2555-2568(1984).

    [14] D. M. Ceperley, E. L. Pollock. Path-integral computation of the low-temperature properties of liquid 4He. Phys. Rev. Lett., 56, 351-354(1986).

    [15] E. W. Brown, J. L. DuBois, B. K. Clark et al. Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas. Phys. Rev. Lett., 110, 146405(2013).

    [16] K. P. Driver, B. Militzer. Development of path integral Monte Carlo simulations with localized nodal surfaces for second-row elements. Phys. Rev. Lett., 115, 176403(2015).

    [17] R. Redmer, B. Holst, M. P. Desjarlais. Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. Phys. Rev. B, 77, 184201(2008).

    [18] J.-P. Crocombette, V. Recoules. Ab initio determination of electrical and thermal conductivity of liquid aluminum. Phys. Rev. B, 72, 104202(2005).

    [19] P. Zhang, C. Wang. Wide range equation of state for fluid hydrogen from density functional theory. Phys. Plasmas, 20, 092703(2013).

    [20] T. Dornheim, M. Bonitz, Z. A. Moldabekov et al. Ab initio simulation of warm dense matter. Phys. Plasmas, 27, 042710(2020).

    [21] W. B. Hubbard. Thermal structure of Jupiter. Astrophys. J., 152, 745-754(1968).

    [22] S. C. Solomon, R. W. Siegfried. Mercury: Internal structure and thermal evolution. Icarus, 23, 192-205(1974).

    [23] S. Labrosse. Thermal and magnetic evolution of the Earth’s core. Phys. Earth Planet. Inter., 140, 127-143(2003).

    [24] M. M. Marinak, T. R. Dittrich, S. W. Haan et al. A comparison of three-dimensional multimode hydrodynamic instability growth on various National Ignition Facility capsule designs with HYDRA simulations. Phys. Plasmas, 5, 1125-1132(1998).

    [25] L. V. Zhigilei, D. S. Ivanov. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B, 68, 064114(2003).

    [26] T. R. Boehly, S. X. Hu, L. A. Collins et al. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications. Phys. Rev. E, 89, 043105(2014).

    [27] R. Kubo. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn., 12, 570-586(1957).

    [28] D. A. Greenwood. The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc., 71, 585-596(1958).

    [29] M. P. Desjarlais, L. A. Collins, J. D. Kress. Electrical conductivity for warm, dense aluminum plasmas and liquids. Phys. Rev. E, 66, 025401(2002).

    [30] P. R Levashov, D. V. Knyazev. Ab initio calculation of transport and optical properties of aluminum: Influence of simulation parameters. Comput. Mater. Sci., 79, 817-829(2013).

    [31] P. R. Levashov, D. V. Knyazev. Transport and optical properties of warm dense aluminum in the two-temperature regime: Ab initio calculation and semiempirical approximation. Phys. Plasmas, 21, 073302(2014).

    [32] N. Nettelmann, J. Wicht, M. French, A. Becker, R. Redmer, W. Lorenzen, M. Bethkenhagen. Ab initio simulations for material properties along the Jupiter adiabat. Astrophys. J., Suppl. Ser., 202, 5(2012).

    [33] V. Recoules, A. Decoster, F. Lambert et al. On the transport coefficients of hydrogen in the inertial confinement fusion regime. Phys. Plasmas, 18, 056306(2011).

    [34] N. de Koker, G. Steinle-Neumann, V. Vlček. Electrical and thermal conductivity of Al liquid at high pressures and temperatures from ab initio computations. Phys. Rev. B, 85, 184201(2012).

    [35] V. Recoules, C. E. Starrett, J. Clérouin et al. Average atom transport properties for pure and mixed species in the hot and warm dense matter regimes. Phys. Plasmas, 19, 102709(2012).

    [36] S. X. Hu, V. N. Goncharov, B. Militzer et al. Strong coupling and degeneracy effects in inertial confinement fusion implosions. Phys. Rev. Lett., 104, 235003(2010).

    [37] S. Crockett, D. Sheppard, J. D. Kress et al. Combining Kohn-Sham and orbital-free density-functional theory for Hugoniot calculations to extreme pressures. Phys. Rev. E, 90, 063314(2014).

    [38] M. Pozzo, D. Alfè, M. P. Desjarlais. Electrical and thermal conductivity of liquid sodium from first-principles calculations. Phys. Rev. B, 84, 054203(2011).

    [39] M. S. Green. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys., 22, 398-413(1954).

    [40] D. A. McQuarrie. Statistical Mechanics, 520-521(1976).

    [41] T. Kawamura, Y. Kangawa, K. Kakimoto. Investigation of thermal conductivity of gan by molecular dynamics. J. Cryst. Growth, 284, 197-202(2005).

    [42] H. Rezania, F. Taherkhani. Temperature and size dependency of thermal conductivity of aluminum nanocluster. J. Nanopart. Res., 14, 1222(2012).

    [43] W. K. Kim, J. H. Shim, M. Kaviany. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models. J. Nucl. Mater., 491, 126-137(2017).

    [44] R. Ramprasad, C. Carbogno, M. Scheffler. Ab initio Green-Kubo approach for the thermal conductivity of solids. Phys. Rev. Lett., 118, 175901(2017).

    [45] P. Umari, S. Baroni, A. Marcolongo. Microscopic theory and quantum simulation of atomic heat transport. Nat. Phys., 12, 80-84(2016).

    [46] J. Kang, L.-W. Wang. First-principles Green-Kubo method for thermal conductivity calculations. Phys. Rev. B, 96, 020302(2017).

    [47] M. French. Thermal conductivity of dissociating water—An ab initio study. New J. Phys., 21, 023007(2019).

    [48] A. Jain, A. J. H. McGaughey. Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles. Phys. Rev. B, 93, 081206(2016).

    [49] J. Ma, W. Li, Y. Chen. Understanding the thermal conductivity and Lorenz number in tungsten from first principles. Phys. Rev. B, 99, 020305(2019).

    [50] H. Wang, L. Zhang, J. Han et al. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. Advances in Neural Information Processing Systems, 4436-4446(2018).

    [51] J. Han, H. Wang, L. Zhang et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun., 228, 178-184(2018).

    [52] J. Han, H. Wang, L. Zhang et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett., 120, 143001(2018).

    [53] R. Car, L. Lin, D. Lu, H. Wang, W. E, L. Zhang, W. Jia, M. Chen. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning(2020).

    [54] H. Wang, W. Jia, W. E, L. Lin, M. Chen, L. Zhang, R. Car, D. Lu. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy. Comput. Phys. Commun., 259, 107624(2021).

    [55] M. Parrinello, L. Bonati. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics. Phys. Rev. Lett., 121, 265701(2018).

    [56] B. Wen, Y. Sun, F.-Z. Dai et al. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential. J. Mater. Sci. Technol., 43, 168-174(2020).

    [57] L. Zhang, H.-Y. Ko, B. Santra et al. Isotope effects in liquid water via deep potential molecular dynamics. Mol. Phys., 117, 3269-3281(2019).

    [58] J. Xu, L. Zhang, M. Chen, X. Wu, B. Santra, C. Zhang. Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the scan functional. Phys. Rev. B, 102, 214113(2020).

    [59] Q. Liu, M. Chen, D. Lu. Structure and dynamics of warm dense aluminum: A molecular dynamics study with density functional theory and deep potential. J. Phys.: Condens. Matter, 32, 144002(2020).

    [60] C. Gao, Q. Liu, Y. Zhang et al. Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics. Phys. Plasmas, 27, 122704(2020).

    [61] L. H. Thomas. The calculation of atomic fields. Math. Proc. Cambridge Philos. Soc., 23, 542-548(1927).

    [62] E. Fermi. Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend. Accad. Naz. Lincei, 6, 32(1927).

    [63] E. Fermi. Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente. Z. Phys., 48, 73-79(1928).

    [64] C. v. Weizsäcker. Zur theorie der kernmassen. Z. Phys. A: Hadrons Nucl., 96, 431-458(1935).

    [65] M. P. Teter, L.-W. Wang. Kinetic-energy functional of the electron density. Phys. Rev. B, 45, 013196(1992).

    [66] N. D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev., 137, A1441(1965).

    [67] T. Brumme, O. Andreussi, P. Giannozzi et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys.: Condens. Matter, 29, 465901(2017).

    [68] M. Ernzerhof, K. Burke, J. P. Perdew. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865(1996).

    [69] P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50, 017953(1994).

    [70] N. A. W. Holzwarth, A. R. Tackett, G. E. Matthews. A projector augmented wave (PAW) code for electronic structure calculations, Part I: Atompaw for generating atom-centered functions. Comput. Phys. Commun., 135, 329-347(2001).

    [71] H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys., 72, 2384-2393(1980).

    [72] C. Huang, M. Chen, J. Xia et al. Introducing PROFESS 3.0: An advanced program for orbital-free density functional theory molecular dynamics simulations. Comput. Phys. Commun., 190, 228-230(2015).

    [73] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81, 511-519(1984).

    [74] W. G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31, 1695-1697(1985).

    [75] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 117, 1-19(1995).

    [76] R. Redmer, B. Holst, M. French. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen. Phys. Rev. B, 83, 235120(2011).

    [77] R. J. Needs, A. J. Read. Calculation of optical matrix elements with nonlocal pseudopotentials. Phys. Rev. B, 44, 13071-13073(1991).

    [78] F. Knider, A. V. Postnikov, J. Hugel. Ab initio calculation of dc resistivity in liquid Al, Na and Pb. J. Phys.: Condens. Matter, 19, 196105(2007).

    [79] R. Redmer, M. French. Electronic transport in partially ionized water plasmas. Phys. Plasmas, 24, 092306(2017).

    [80] D. R. Hamann. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B, 88, 085117(2013).

    [81] D. R. Hamann. Erratum: Optimized norm-conserving Vanderbilt pseudopotentials [Phys. Rev. B 88, 085117 (2013)]. Phys. Rev. B, 95, 239906(2017).

    [82] A. Dal Corso. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci., 95, 337-350(2014).

    [83] J. L. Martins, N. Troullier. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 43, 1993-2006(1991).

    [84] C. E. Wilmer, H. Babaei, P. Boone. Heat flux for many-body interactions: Corrections to lammps. J. Chem. Theory Comput., 15, 5579-5587(2019).

    [85] E. A. Carter, C. Huang. Transferable local pseudopotentials for magnesium, aluminum and silicon. Phys. Chem. Chem. Phys., 10, 7109-7120(2008).

    [86] C. Meng, J. Yuan, S. Zhang, Y. Hou, C. Gao, D. Kang, J. Zeng. Thermally driven fermi glass states in warm dense matter: Effects on terahertz and direct-current conductivities. Phys. Plasmas, 26, 092701(2019).

    [87] B. B. L. Witte, M. French, P. Sperling et al. Observations of non-linear plasmon damping in dense plasmas. Phys. Plasmas, 25, 056901(2018).

    [88] A. McKelvey, G. E. Kemp, P. A. Sterne et al. Thermal conductivity measurements of proton-heated warm dense aluminum. Sci. Rep., 7, 7015(2017).

    Qianrui Liu, Junyi Li, Mohan Chen. Thermal transport by electrons and ions in warm dense aluminum: A combined density functional theory and deep potential study[J]. Matter and Radiation at Extremes, 2021, 6(2): 026902
    Download Citation