• Acta Optica Sinica
  • Vol. 35, Issue 4, 416001 (2015)
Zhang Jun*, Zhang Peiqing, Niu Xueke, Dai Shixun, Zhang Wei, Wang Xunsi, and Nie Qiuhua
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201535.0416001 Cite this Article Set citation alerts
    Zhang Jun, Zhang Peiqing, Niu Xueke, Dai Shixun, Zhang Wei, Wang Xunsi, Nie Qiuhua. Enhancing the Mid-infrared Fluorescence Emission by Designing Photonic Crystals[J]. Acta Optica Sinica, 2015, 35(4): 416001 Copy Citation Text show less
    References

    [1] I T Sorokina, K L Vodopyanov. Solid-State Mid-Infrared Laser Sources [M]. Topics in Applied Physics–Springer, 2003, 89: 221-224.

    [2] C Xia, M Kumar, O P Kulkarni, M N Islam, et al.. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping [J]. Opt Lett, 2006, 31(17): 2553-2555.

    [3] A B Seddon, Z Tang, D Furniss, S Sujecki, et al.. Progress in rare-earth-doped mid-infrared fiber lasers [J]. Opt Express, 2010, 18(25): 26704-26719.

    [4] L Bachmann, K Rosa, P D Ana, et al.. Crystalline structure of human enamel irradiated with Er, Cr: YSGG laser[J]. Laser Physics Letters, 2009, 6(2): 159-162.

    [5] Zhang Long, Chen Lei, Fan Youyu, et al.. Development of mid- infrared transmitting glasses window and applications [J]. Acta Optica Sinica, 2011, 31(9): 0900134.

    [6] K Paivasaari, V K Tikhomirov, J Turunen. High refractive index chalcogenide glass for photonic crystal applications [J]. Opt Express, 2007, 15(5): 2336-2340.

    [7] E Nicoletti, G Zhou, B Jia, et al.. Observation of multiple higher- order stopgaps from three- dimensional chalcogenide glass photonic crystals [J]. Opt Lett, 2008, 33(20): 2311-2313.

    [8] M Olivier, J Tchahame, P Němec, et al.. Structure, nonlinear properties, and photosensitivity of (GeSe2) 100- x (Sb2Se3)x glasses [J]. Optical Materials Express, 2014, 4(3): 525-540.

    [9] A Giesen, H Hügel, A Voss, et al.. Scalable concept for diode-pumped high-power solid-state lasers [J]. Appl Phys B, 1994, 58(5): 365-372.

    [10] J Heo. Optical characteristics of rare-earth-doped sulphide glasses [J]. J Mater Sci Lett, 1995, 14(14): 1014-1016.

    [11] J D Joannopoulos, S G Johnson, J N Winn, et al.. Photonic Crystals: Molding the Flow of Light [M]. Princeton University Press, 2011: 135-155.

    [12] H Ruda, N Matsuura. Properties and Applications of Photonic Crystals [M]. Optical Properties of Condensed Matter and Applications, John Wiley & Sons Ltd, 2006: 197-214.

    [13] E Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys Rev Lett, 1987, 58(20): 2059-2062.

    [14] P R Villeneuve, S Fan, J Joannopoulos. Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency [J]. Phys Rev B, 1996, 54(11): 7837-7842.

    [15] Yang Zhongmin, Xu Shiqing, Jiang Zhonghong, et al.. Overview of research on magneto-optical glass applied to all-optical fiber sensor [J]. Journal of the Chinese Rare Earth Society, 2003, 21(2): 115-122.

    [16] V Kopp, B Fan, H Vithana, et al.. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals [J]. Opt Lett, 1998, 23(21): 1707-1709.

    [17] Che Ming, Zhou Yunsong, Wang Fuhe, et al.. Density of sates and local density of states of two-dimensional photonic crystals with cylinder scatter in square lattice [J]. Acta Optica Sinica, 2006, 26(12): 1847-1851.

    [18] M Li, P Zhang, J Li, et al.. Directional emission from rare earth ions in inverse photonic crystals [J]. Appl Phys B, 2007, 89(2-3): 251-255.

    [19] R Dalichaouch, J Armstrong, S Schultz, et al.. Microwave localization by two-dimensional random scattering [J]. Nature, 1991, 354: 53-55.

    [20] X H Wang, R Z Wang, B Y Gu, et al.. Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps [J]. Phys Rev Lett, 2002, 88(9): 093902.

    [21] Z D Liu, Y Lin, S Y Zhu, et al.. The virtual-photon effects in spontaneous emission from an atom embedded in a photonic band gap structure [J]. Phys Lett A, 1999, 264(2): 137-141.

    [22] P Q Zhang, S X Dai, X K Niu, et al.. Design of rare-earth-ion doped chalcogenide photonic crystals for enhancing the fluorescence emission [J]. Opt Commun, 2014, 322: 123-128.

    [23] F Wang, D P Landau. Efficient, multiple-range random walk algorithm to calculate the density of states [J]. Phys Rev Lett, 2001, 86(10): 2050-2053.

    [24] T N Oder, K H Kim, J Y Lin, et al.. III-nitride blue and ultraviolet photonic crystal light emitting diodes [J]. Appl Phys Lett, 2004, 84(4): 466-468.

    [25] Y Akahane, T Asano, B S Song, et al.. Fine-tuned high-Q photonic-crystal nanocavity [J]. Opt Express, 2005, 13(4): 1202-1214.

    [26] X K Niu, P Q Zhang, Y X Zhou, et al.. Modeling and simulation of mid-IR amplifying characteristics of Tm3+-doped chalcogenide photonic crystal fibers [J]. Infrared Physics & Technology, 2014, 63: 178-183.

    [27] Luan Pigang, Chen Qichang. Photonic Crystals [M]. Taiwan: Wu-Nan Book Press, 2007: 22-23.

    [28] J Li, X Shen, J Q Sun, et al.. Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelength [J]. Thin Solid Film, 2013, 545: 462-465.

    [29] T Han, S Madden, D Bulla, et al.. Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography [J]. Opt Express, 2010, 18(18): 19286-19291.

    Zhang Jun, Zhang Peiqing, Niu Xueke, Dai Shixun, Zhang Wei, Wang Xunsi, Nie Qiuhua. Enhancing the Mid-infrared Fluorescence Emission by Designing Photonic Crystals[J]. Acta Optica Sinica, 2015, 35(4): 416001
    Download Citation