• Photonics Research
  • Vol. 10, Issue 12, 2693 (2022)
Daixuan Wu1, Jiawei Luo1, Zhibing Lu1, Hanpeng Liang1, Yuecheng Shen1、2、3、5、*, and Zhaohui Li1、2、4、6、*
Author Affiliations
  • 1School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou 510006, China
  • 2State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
  • 3State Key Laboratory of Advanced Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • 4Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
  • 5e-mail:
  • 6e-mail:
  • show less
    DOI: 10.1364/PRJ.473783 Cite this Article Set citation alerts
    Daixuan Wu, Jiawei Luo, Zhibing Lu, Hanpeng Liang, Yuecheng Shen, Zhaohui Li. Two-stage matrix-assisted glare suppression at a large scale[J]. Photonics Research, 2022, 10(12): 2693 Copy Citation Text show less

    Abstract

    Scattering-induced glares hinder the detection of weak objects in various scenarios. Recent advances in wavefront shaping show one can not only enhance intensities through constructive interference but also suppress glares within a targeted region via destructive interference. However, due to the lack of a physical model and mathematical guidance, existing approaches have generally adopted a feedback-based scheme, which requires time-consuming hardware iteration. Moreover, glare suppression with up to tens of speckles was demonstrated by controlling thousands of independent elements. Here, we reported the development of a method named two-stage matrix-assisted glare suppression (TAGS), which is capable of suppressing glares at a large scale without triggering time-consuming hardware iteration. By using the TAGS, we experimentally darkened an area containing 100 speckles by controlling only 100 independent elements, achieving an average intensity of only 0.11 of the original value. It is also noticeable that the TAGS is computationally efficient, which only takes 0.35 s to retrieve the matrix and 0.11 s to synthesize the wavefront. With the same number of independent controls, further demonstrations on suppressing larger scales up to 256 speckles were also reported. We envision that the superior performance of the TAGS at a large scale can be beneficial to a variety of demanding imaging tasks under a scattering environment.
    Daixuan Wu, Jiawei Luo, Zhibing Lu, Hanpeng Liang, Yuecheng Shen, Zhaohui Li. Two-stage matrix-assisted glare suppression at a large scale[J]. Photonics Research, 2022, 10(12): 2693
    Download Citation