• Acta Optica Sinica
  • Vol. 39, Issue 6, 0606003 (2019)
Wei Chen1、2、**, Yingxiong Song1、2, Zhengxuan Li1、2, Chengcheng Li1、2, Jian Chen1、2、*, and Yingchun Li1、2
Author Affiliations
  • 1 Shanghai Institute for Advanced Communication and Data Science, Shanghai 200444, China
  • 2 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.3788/AOS201939.0606003 Cite this Article Set citation alerts
    Wei Chen, Yingxiong Song, Zhengxuan Li, Chengcheng Li, Jian Chen, Yingchun Li. 50 Gbit/s NRZ IM-DD Downstream Transmission System Based on 25G-Class Optical Components[J]. Acta Optica Sinica, 2019, 39(6): 0606003 Copy Citation Text show less
    References

    [1] Houtsma V, van Veen D, Harstead E. Recent progress on standardization of next-generation 25, 50, and 100G EPON[J]. Journal of Lightwave Technology, 35, 1228-1234(2017). http://ieeexplore.ieee.org/document/7779079/

         Houtsma V, van Veen D, Harstead E. Recent progress on standardization of next-generation 25, 50, and 100G EPON[J]. Journal of Lightwave Technology, 35, 1228-1234(2017). http://ieeexplore.ieee.org/document/7779079/

         Houtsma V, van Veen D, Harstead E. Recent progress on standardization of next-generation 25, 50, and 100G EPON[J]. Journal of Lightwave Technology, 35, 1228-1234(2017). http://ieeexplore.ieee.org/document/7779079/

         Houtsma V, van Veen D, Harstead E. Recent progress on standardization of next-generation 25, 50, and 100G EPON[J]. Journal of Lightwave Technology, 35, 1228-1234(2017). http://ieeexplore.ieee.org/document/7779079/

    [2] Li S P, Ye Z C, Cheng N. et al. Demonstration of a real-time 25-Gb/s TDM-PON system with 25-Gb/s downstream based on optical duobinary and 10-Gb/s burst-mode upstream based on NRZ. [C]//Optical Fiber Communications Conference and Exhibition (OFC), March 20-22, 2016, Anaheim, California United States. Washington D. C.: OSA, Th1l, 3(2016).

         Li S P, Ye Z C, Cheng N. et al. Demonstration of a real-time 25-Gb/s TDM-PON system with 25-Gb/s downstream based on optical duobinary and 10-Gb/s burst-mode upstream based on NRZ. [C]//Optical Fiber Communications Conference and Exhibition (OFC), March 20-22, 2016, Anaheim, California United States. Washington D. C.: OSA, Th1l, 3(2016).

         Li S P, Ye Z C, Cheng N. et al. Demonstration of a real-time 25-Gb/s TDM-PON system with 25-Gb/s downstream based on optical duobinary and 10-Gb/s burst-mode upstream based on NRZ. [C]//Optical Fiber Communications Conference and Exhibition (OFC), March 20-22, 2016, Anaheim, California United States. Washington D. C.: OSA, Th1l, 3(2016).

         Li S P, Ye Z C, Cheng N. et al. Demonstration of a real-time 25-Gb/s TDM-PON system with 25-Gb/s downstream based on optical duobinary and 10-Gb/s burst-mode upstream based on NRZ. [C]//Optical Fiber Communications Conference and Exhibition (OFC), March 20-22, 2016, Anaheim, California United States. Washington D. C.: OSA, Th1l, 3(2016).

    [3] Houtsma V, van Veen D. Demonstration of symmetrical 25 Gbps TDM-PON with 31.5 dB optical power budget using only 10 Gbps optical components. [C]//2015 European Conference on Optical Communication (ECOC), September 27- October 1, 2015, Valencia, Spain. New York: IEEE, 7341691(2015).

         Houtsma V, van Veen D. Demonstration of symmetrical 25 Gbps TDM-PON with 31.5 dB optical power budget using only 10 Gbps optical components. [C]//2015 European Conference on Optical Communication (ECOC), September 27- October 1, 2015, Valencia, Spain. New York: IEEE, 7341691(2015).

         Houtsma V, van Veen D. Demonstration of symmetrical 25 Gbps TDM-PON with 31.5 dB optical power budget using only 10 Gbps optical components. [C]//2015 European Conference on Optical Communication (ECOC), September 27- October 1, 2015, Valencia, Spain. New York: IEEE, 7341691(2015).

         Houtsma V, van Veen D. Demonstration of symmetrical 25 Gbps TDM-PON with 31.5 dB optical power budget using only 10 Gbps optical components. [C]//2015 European Conference on Optical Communication (ECOC), September 27- October 1, 2015, Valencia, Spain. New York: IEEE, 7341691(2015).

    [4] Wang J, Cao Z Z, Zhou H et al. A wavelength division multiplexing radio-over-fiber system with 58 GHz optical orthogonal frequency division multiplexing millimeter-wave signal[J]. Acta Optica Sinica, 30, 1274-1278(2010).

         Wang J, Cao Z Z, Zhou H et al. A wavelength division multiplexing radio-over-fiber system with 58 GHz optical orthogonal frequency division multiplexing millimeter-wave signal[J]. Acta Optica Sinica, 30, 1274-1278(2010).

         Wang J, Cao Z Z, Zhou H et al. A wavelength division multiplexing radio-over-fiber system with 58 GHz optical orthogonal frequency division multiplexing millimeter-wave signal[J]. Acta Optica Sinica, 30, 1274-1278(2010).

         Wang J, Cao Z Z, Zhou H et al. A wavelength division multiplexing radio-over-fiber system with 58 GHz optical orthogonal frequency division multiplexing millimeter-wave signal[J]. Acta Optica Sinica, 30, 1274-1278(2010).

    [5] Xiao G L, Xu J L, Yang H Y et al. A plasmon multi-channel wavelength-division multiplexer constructed with a nanodisk structure embedded in a rectangular metal block[J]. Acta Optica Sinica, 38, 1206006(2018).

         Xiao G L, Xu J L, Yang H Y et al. A plasmon multi-channel wavelength-division multiplexer constructed with a nanodisk structure embedded in a rectangular metal block[J]. Acta Optica Sinica, 38, 1206006(2018).

         Xiao G L, Xu J L, Yang H Y et al. A plasmon multi-channel wavelength-division multiplexer constructed with a nanodisk structure embedded in a rectangular metal block[J]. Acta Optica Sinica, 38, 1206006(2018).

         Xiao G L, Xu J L, Yang H Y et al. A plasmon multi-channel wavelength-division multiplexer constructed with a nanodisk structure embedded in a rectangular metal block[J]. Acta Optica Sinica, 38, 1206006(2018).

    [6] Zhang P, Tian C L, Qiao Y et al. Four wave mixing effect on simulated Raman scattering in single mode fiber[J]. Laser & Optoelectronics Progress, 55, 061901(2018).

         Zhang P, Tian C L, Qiao Y et al. Four wave mixing effect on simulated Raman scattering in single mode fiber[J]. Laser & Optoelectronics Progress, 55, 061901(2018).

         Zhang P, Tian C L, Qiao Y et al. Four wave mixing effect on simulated Raman scattering in single mode fiber[J]. Laser & Optoelectronics Progress, 55, 061901(2018).

         Zhang P, Tian C L, Qiao Y et al. Four wave mixing effect on simulated Raman scattering in single mode fiber[J]. Laser & Optoelectronics Progress, 55, 061901(2018).

    [7] Zhang Q Q, Zhang P, Lu J et al. Joint phase noise compensation algorithm using RF-pilot and extended Kalman filter in CO-OFDM systems[J]. Acta Optica Sinica, 38, 0906006(2018).

         Zhang Q Q, Zhang P, Lu J et al. Joint phase noise compensation algorithm using RF-pilot and extended Kalman filter in CO-OFDM systems[J]. Acta Optica Sinica, 38, 0906006(2018).

         Zhang Q Q, Zhang P, Lu J et al. Joint phase noise compensation algorithm using RF-pilot and extended Kalman filter in CO-OFDM systems[J]. Acta Optica Sinica, 38, 0906006(2018).

         Zhang Q Q, Zhang P, Lu J et al. Joint phase noise compensation algorithm using RF-pilot and extended Kalman filter in CO-OFDM systems[J]. Acta Optica Sinica, 38, 0906006(2018).

    [8] Zhou Z L, Zhan Y J, Cai Q L et al. Algorithm for low-computational-complexity carrier-phase estimation in optical communication systems[J]. Acta Optica Sinica, 38, 1206003(2018).

         Zhou Z L, Zhan Y J, Cai Q L et al. Algorithm for low-computational-complexity carrier-phase estimation in optical communication systems[J]. Acta Optica Sinica, 38, 1206003(2018).

         Zhou Z L, Zhan Y J, Cai Q L et al. Algorithm for low-computational-complexity carrier-phase estimation in optical communication systems[J]. Acta Optica Sinica, 38, 1206003(2018).

         Zhou Z L, Zhan Y J, Cai Q L et al. Algorithm for low-computational-complexity carrier-phase estimation in optical communication systems[J]. Acta Optica Sinica, 38, 1206003(2018).

    [9] Chen C, Tang X F, Zhang Z H. Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation. [C]//Optical Fiber Communication Conference 2015, March 22-26, 2015, Los Angeles, California United States. Washington D. C.: OSA, Th4A, 5(2015).

         Chen C, Tang X F, Zhang Z H. Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation. [C]//Optical Fiber Communication Conference 2015, March 22-26, 2015, Los Angeles, California United States. Washington D. C.: OSA, Th4A, 5(2015).

         Chen C, Tang X F, Zhang Z H. Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation. [C]//Optical Fiber Communication Conference 2015, March 22-26, 2015, Los Angeles, California United States. Washington D. C.: OSA, Th4A, 5(2015).

         Chen C, Tang X F, Zhang Z H. Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation. [C]//Optical Fiber Communication Conference 2015, March 22-26, 2015, Los Angeles, California United States. Washington D. C.: OSA, Th4A, 5(2015).

    [10] Wei J L, Eiselt N, Griesser H et al. First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications. [C]//2015 European Conference on Optical Communication (ECOC), September 27- October 1, 2015, Valencia, Spain. New York: IEEE, 7341692(2015).

         Wei J L, Eiselt N, Griesser H et al. First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications. [C]//2015 European Conference on Optical Communication (ECOC), September 27- October 1, 2015, Valencia, Spain. New York: IEEE, 7341692(2015).

         Wei J L, Eiselt N, Griesser H et al. First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications. [C]//2015 European Conference on Optical Communication (ECOC), September 27- October 1, 2015, Valencia, Spain. New York: IEEE, 7341692(2015).

         Wei J L, Eiselt N, Griesser H et al. First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications. [C]//2015 European Conference on Optical Communication (ECOC), September 27- October 1, 2015, Valencia, Spain. New York: IEEE, 7341692(2015).

    [11] Tao M H, Zhou L, Zeng H Y. et al. 50-Gb/s/λ TDM-PON based on 10G DML and 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band. [C]//Optical Fiber Communication Conference 2017, March 19-23, 2017, Los Angeles, California United States. Washington D. C.: OSA, Tu3G, 2(2017).

         Tao M H, Zhou L, Zeng H Y. et al. 50-Gb/s/λ TDM-PON based on 10G DML and 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band. [C]//Optical Fiber Communication Conference 2017, March 19-23, 2017, Los Angeles, California United States. Washington D. C.: OSA, Tu3G, 2(2017).

         Tao M H, Zhou L, Zeng H Y. et al. 50-Gb/s/λ TDM-PON based on 10G DML and 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band. [C]//Optical Fiber Communication Conference 2017, March 19-23, 2017, Los Angeles, California United States. Washington D. C.: OSA, Tu3G, 2(2017).

         Tao M H, Zhou L, Zeng H Y. et al. 50-Gb/s/λ TDM-PON based on 10G DML and 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band. [C]//Optical Fiber Communication Conference 2017, March 19-23, 2017, Los Angeles, California United States. Washington D. C.: OSA, Tu3G, 2(2017).

    [12] Guo Y, Yin Y J, Song Y X. et al. Demonstration of 25 Gbit/s per channel NRZ transmission with 35 dB power budget using 25G Ge/Si APD for next generation 100G-PON. [C]//Optical Fiber Communications Conference and Exhibition 2017, March 19-23, 2017, Los Angeles, California United States. Washington D. C.: OSA, M3H, 6(2017).

         Guo Y, Yin Y J, Song Y X. et al. Demonstration of 25 Gbit/s per channel NRZ transmission with 35 dB power budget using 25G Ge/Si APD for next generation 100G-PON. [C]//Optical Fiber Communications Conference and Exhibition 2017, March 19-23, 2017, Los Angeles, California United States. Washington D. C.: OSA, M3H, 6(2017).

         Guo Y, Yin Y J, Song Y X. et al. Demonstration of 25 Gbit/s per channel NRZ transmission with 35 dB power budget using 25G Ge/Si APD for next generation 100G-PON. [C]//Optical Fiber Communications Conference and Exhibition 2017, March 19-23, 2017, Los Angeles, California United States. Washington D. C.: OSA, M3H, 6(2017).

         Guo Y, Yin Y J, Song Y X. et al. Demonstration of 25 Gbit/s per channel NRZ transmission with 35 dB power budget using 25G Ge/Si APD for next generation 100G-PON. [C]//Optical Fiber Communications Conference and Exhibition 2017, March 19-23, 2017, Los Angeles, California United States. Washington D. C.: OSA, M3H, 6(2017).

    [13] Xia J Q, Li Z X, Li Y C et al. Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON[J]. Optics Communications, 410, 328-332(2018). http://adsabs.harvard.edu/abs/2018OptCo.410..328X

         Xia J Q, Li Z X, Li Y C et al. Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON[J]. Optics Communications, 410, 328-332(2018). http://adsabs.harvard.edu/abs/2018OptCo.410..328X

         Xia J Q, Li Z X, Li Y C et al. Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON[J]. Optics Communications, 410, 328-332(2018). http://adsabs.harvard.edu/abs/2018OptCo.410..328X

         Xia J Q, Li Z X, Li Y C et al. Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON[J]. Optics Communications, 410, 328-332(2018). http://adsabs.harvard.edu/abs/2018OptCo.410..328X

    [14] Chen W, Song Y X, Li Z X et al. Experimental study of 50 Gb/s PAM4 transmission based on 25 GHz optical components[J]. Optical Communication Technology, 42, 35-38(2018).

         Chen W, Song Y X, Li Z X et al. Experimental study of 50 Gb/s PAM4 transmission based on 25 GHz optical components[J]. Optical Communication Technology, 42, 35-38(2018).

         Chen W, Song Y X, Li Z X et al. Experimental study of 50 Gb/s PAM4 transmission based on 25 GHz optical components[J]. Optical Communication Technology, 42, 35-38(2018).

         Chen W, Song Y X, Li Z X et al. Experimental study of 50 Gb/s PAM4 transmission based on 25 GHz optical components[J]. Optical Communication Technology, 42, 35-38(2018).

    [15] Hu S H, Yi X W, Zhang J et al. Volterra equalization of complex modulation utilizing frequency chirp in directly modulated lasers[J]. Optics Communications, 409, 99-104(2018).

         Hu S H, Yi X W, Zhang J et al. Volterra equalization of complex modulation utilizing frequency chirp in directly modulated lasers[J]. Optics Communications, 409, 99-104(2018).

         Hu S H, Yi X W, Zhang J et al. Volterra equalization of complex modulation utilizing frequency chirp in directly modulated lasers[J]. Optics Communications, 409, 99-104(2018).

         Hu S H, Yi X W, Zhang J et al. Volterra equalization of complex modulation utilizing frequency chirp in directly modulated lasers[J]. Optics Communications, 409, 99-104(2018).

    [16] Tang X Z, Zhou J, Guo M Q. et al. An efficient nonlinear equalizer for 40-Gb/s PAM4-PON systems. [C]//Optical Fiber Communications Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA, W2A, 62(2018).

         Tang X Z, Zhou J, Guo M Q. et al. An efficient nonlinear equalizer for 40-Gb/s PAM4-PON systems. [C]//Optical Fiber Communications Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA, W2A, 62(2018).

         Tang X Z, Zhou J, Guo M Q. et al. An efficient nonlinear equalizer for 40-Gb/s PAM4-PON systems. [C]//Optical Fiber Communications Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA, W2A, 62(2018).

         Tang X Z, Zhou J, Guo M Q. et al. An efficient nonlinear equalizer for 40-Gb/s PAM4-PON systems. [C]//Optical Fiber Communications Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA, W2A, 62(2018).

    [17] Giacoumidis E, Matin A, Wei J L et al. Blind nonlinearity equalization by machine-learning-based clustering for single- and multichannel coherent optical OFDM[J]. Journal of Lightwave Technology, 36, 721-727(2018). http://ieeexplore.ieee.org/document/8125098/

         Giacoumidis E, Matin A, Wei J L et al. Blind nonlinearity equalization by machine-learning-based clustering for single- and multichannel coherent optical OFDM[J]. Journal of Lightwave Technology, 36, 721-727(2018). http://ieeexplore.ieee.org/document/8125098/

         Giacoumidis E, Matin A, Wei J L et al. Blind nonlinearity equalization by machine-learning-based clustering for single- and multichannel coherent optical OFDM[J]. Journal of Lightwave Technology, 36, 721-727(2018). http://ieeexplore.ieee.org/document/8125098/

         Giacoumidis E, Matin A, Wei J L et al. Blind nonlinearity equalization by machine-learning-based clustering for single- and multichannel coherent optical OFDM[J]. Journal of Lightwave Technology, 36, 721-727(2018). http://ieeexplore.ieee.org/document/8125098/

    [18] Li P X, Yi L L, Xue L et al. 56 Gbps IM/DD PON based on 10G-class optical devices with 29 dB loss budget enabled by machine learning. [C]//Optical Fiber Communications Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA, M2B, 2(2018).

         Li P X, Yi L L, Xue L et al. 56 Gbps IM/DD PON based on 10G-class optical devices with 29 dB loss budget enabled by machine learning. [C]//Optical Fiber Communications Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA, M2B, 2(2018).

         Li P X, Yi L L, Xue L et al. 56 Gbps IM/DD PON based on 10G-class optical devices with 29 dB loss budget enabled by machine learning. [C]//Optical Fiber Communications Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA, M2B, 2(2018).

         Li P X, Yi L L, Xue L et al. 56 Gbps IM/DD PON based on 10G-class optical devices with 29 dB loss budget enabled by machine learning. [C]//Optical Fiber Communications Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA, M2B, 2(2018).

    [19] Houtsma V, van Veen D. Bi-directional 25G/50G TDM-PON with extended power budget using 25G APD and coherent detection[J]. Journal of Lightwave Technology, 122-127(2017). http://ieeexplore.ieee.org/document/7937142/

         Houtsma V, van Veen D. Bi-directional 25G/50G TDM-PON with extended power budget using 25G APD and coherent detection[J]. Journal of Lightwave Technology, 122-127(2017). http://ieeexplore.ieee.org/document/7937142/

         Houtsma V, van Veen D. Bi-directional 25G/50G TDM-PON with extended power budget using 25G APD and coherent detection[J]. Journal of Lightwave Technology, 122-127(2017). http://ieeexplore.ieee.org/document/7937142/

         Houtsma V, van Veen D. Bi-directional 25G/50G TDM-PON with extended power budget using 25G APD and coherent detection[J]. Journal of Lightwave Technology, 122-127(2017). http://ieeexplore.ieee.org/document/7937142/

    [20] Zhang J W, Wey J S, Yu J J. et al. Symmetrical 50-Gb/s/λ PAM-4 TDM-PON in O-band with DSP and semiconductor optical amplifier supporting PR-30 link loss budget. [C]//Optical Fiber Communication Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA, M1B, 4(2018).

         Zhang J W, Wey J S, Yu J J. et al. Symmetrical 50-Gb/s/λ PAM-4 TDM-PON in O-band with DSP and semiconductor optical amplifier supporting PR-30 link loss budget. [C]//Optical Fiber Communication Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA, M1B, 4(2018).

         Zhang J W, Wey J S, Yu J J. et al. Symmetrical 50-Gb/s/λ PAM-4 TDM-PON in O-band with DSP and semiconductor optical amplifier supporting PR-30 link loss budget. [C]//Optical Fiber Communication Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA, M1B, 4(2018).

         Zhang J W, Wey J S, Yu J J. et al. Symmetrical 50-Gb/s/λ PAM-4 TDM-PON in O-band with DSP and semiconductor optical amplifier supporting PR-30 link loss budget. [C]//Optical Fiber Communication Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA, M1B, 4(2018).

    [21] Harstead E. 25 G based PON technology. [C]//2018 Optical Fiber Communications Conference and Exposition (OFC), March 11-15, San Diego, CA, USA. New York: IEEE, 17856139(2018).

         Harstead E. 25 G based PON technology. [C]//2018 Optical Fiber Communications Conference and Exposition (OFC), March 11-15, San Diego, CA, USA. New York: IEEE, 17856139(2018).

         Harstead E. 25 G based PON technology. [C]//2018 Optical Fiber Communications Conference and Exposition (OFC), March 11-15, San Diego, CA, USA. New York: IEEE, 17856139(2018).

         Harstead E. 25 G based PON technology. [C]//2018 Optical Fiber Communications Conference and Exposition (OFC), March 11-15, San Diego, CA, USA. New York: IEEE, 17856139(2018).

    [22] Xia J Q, Li Y C, Xu T T et al. Timing recovery algorithm selection for duo-binary signal used in next generation 25G-EPON[J]. IEEE Photonics Journal, 9, 7905907(2017). http://ieeexplore.ieee.org/document/7959038/

         Xia J Q, Li Y C, Xu T T et al. Timing recovery algorithm selection for duo-binary signal used in next generation 25G-EPON[J]. IEEE Photonics Journal, 9, 7905907(2017). http://ieeexplore.ieee.org/document/7959038/

         Xia J Q, Li Y C, Xu T T et al. Timing recovery algorithm selection for duo-binary signal used in next generation 25G-EPON[J]. IEEE Photonics Journal, 9, 7905907(2017). http://ieeexplore.ieee.org/document/7959038/

         Xia J Q, Li Y C, Xu T T et al. Timing recovery algorithm selection for duo-binary signal used in next generation 25G-EPON[J]. IEEE Photonics Journal, 9, 7905907(2017). http://ieeexplore.ieee.org/document/7959038/

    [23] Oerder M, Meyr H. Digital filter and square timing recovery[J]. IEEE Transactions on Communications, 36, 605-612(1988). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1476

         Oerder M, Meyr H. Digital filter and square timing recovery[J]. IEEE Transactions on Communications, 36, 605-612(1988). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1476

         Oerder M, Meyr H. Digital filter and square timing recovery[J]. IEEE Transactions on Communications, 36, 605-612(1988). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1476

         Oerder M, Meyr H. Digital filter and square timing recovery[J]. IEEE Transactions on Communications, 36, 605-612(1988). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1476

    Wei Chen, Yingxiong Song, Zhengxuan Li, Chengcheng Li, Jian Chen, Yingchun Li. 50 Gbit/s NRZ IM-DD Downstream Transmission System Based on 25G-Class Optical Components[J]. Acta Optica Sinica, 2019, 39(6): 0606003
    Download Citation