• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101023 (2022)
Zerui Yuan1、2, Yunwei Dou1、2, Pan Fang1、2, Ying Chen1、2, Wenlong Yin1、2、3、*, and Bin Kang1、2、3、**
Author Affiliations
  • 1Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621999, China
  • 2Sichuan Research Center of New Materials, Chengdu, Sichuan 610200, China
  • 3Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang, Sichuan 621999, China
  • show less
    DOI: 10.3788/CJL202249.0101023 Cite this Article Set citation alerts
    Zerui Yuan, Yunwei Dou, Pan Fang, Ying Chen, Wenlong Yin, Bin Kang. Fabrication of Mid-Infrared ZnGeP2 Crystals and Devices with Large Apertures and Ultra-Low Absorption Coefficients[J]. Chinese Journal of Lasers, 2022, 49(1): 0101023 Copy Citation Text show less
    References

    [1] Wang F F, Li J T, Sun X H et al. High-power and high-efficiency 4.3 μm ZGP-OPO[J]. Chinese Optics Letters, 20, 011403(2022).

    [2] Qu C B, Kang M Q, Xiang X J et al. Theoretical study of 4.3 μm dual-wavelength pumped Dy∶InF3 high-energy mid-infrared fiber lasers[J]. Chinese Journal of Lasers, 47, 0801003(2020).

    [3] Zhou L, Liu Y, Xie G H et al. Mid-infrared optical frequency comb in the 2.74.0 μm range via difference frequency generation from a compact laser system[J]. High Power Laser Science and Engineering, 8, e32(2020).

    [4] Nie H K, Wang F F, Liu J T et al. Rare-earth ions-doped mid-infrared (2.73 μm) bulk lasers: a review [Invited][J]. Chinese Optics Letters, 19, 091407(2021).

    [5] Wang Q, Qi L, Wang R Y et al. Research progress of mid infrared laser via intra-pulse difference frequency generation of femtosecond laser[J]. Laser & Optoelectronics Progress, 58, 1700001(2021).

    [6] Nie H K, Ning J, Zhang B T et al. Recent progress of optical-superlattice-based mid-infrared optical parametric oscillators[J]. Chinese Journal of Lasers, 48, 0501008(2021).

    [7] Verozubova G A, Okunev A O, Gribenyukov A I et al. Growth and defect structure of ZnGeP2 crystals[J]. Journal of Crystal Growth, 312, 1122-1126(2010).

    [8] Schunemann P G, Drevinsky P J, Ohmer M C. Gamma ray processing of ZnGeP2: a nonlinear optical material for the infrared[J]. MRS Online Proceedings Library, 354, 579-583(1994).

    [9] Zawilski K T, Schunemann P G, Setzler S D et al. Large aperture single crystal ZnGeP2 for high-energy applications[J]. Journal of Crystal Growth, 310, 1891-1896(2008).

    [10] Yuan Z R, Dou Y W, Chen Y et al. Growth of large ZnGeP2 single crystals and fabrication of large ZnGeP2 crystal devices[J]. Journal of Synthetic Crystals, 49, 1491-1493(2020).

    [11] Schunemann P G. New materials extend laser spectral coverage deep into the infrared[J]. Laser Focus World, 4, 37-41(2018).

    [12] Liu G, Mi S, Yang K et al. 161 W middle infrared ZnGeP2 MOPA system pumped by 300 W-class Ho∶YAG MOPA system[J]. Optics Letters, 46, 82-85(2021).

    Zerui Yuan, Yunwei Dou, Pan Fang, Ying Chen, Wenlong Yin, Bin Kang. Fabrication of Mid-Infrared ZnGeP2 Crystals and Devices with Large Apertures and Ultra-Low Absorption Coefficients[J]. Chinese Journal of Lasers, 2022, 49(1): 0101023
    Download Citation