• Journal of Semiconductors
  • Vol. 45, Issue 9, 092301 (2024)
Leonarde N. Rodrigues1,*, Wesley F. Inoch1, Marcos L. F. Gomes2, Odilon D. D. Couto Jr.2..., Bráulio S. Archanjo3 and Sukarno O. Ferreira1|Show fewer author(s)
Author Affiliations
  • 1Physics Department, Federal University of Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
  • 2Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, 13083-859, São Paulo, Brazil
  • 3National Institute of Metrology Quality and Technology (Inmetro), Materials Metrology Division (DIMAT), Xerém, 25250-020, Rio de Janeiro, Brazil
  • show less
    DOI: 10.1088/1674-4926/24030022 Cite this Article
    Leonarde N. Rodrigues, Wesley F. Inoch, Marcos L. F. Gomes, Odilon D. D. Couto Jr., Bráulio S. Archanjo, Sukarno O. Ferreira. Localized-states quantum confinement induced by roughness in CdMnTe/CdTe heterostructures grown on Si(111) substrates[J]. Journal of Semiconductors, 2024, 45(9): 092301 Copy Citation Text show less
    References

    [1] M Henini. Molecular beam epitaxy: from research to mass production. Elsevier(2012).

    [2] G Wang, B L Liu, A Balocchi et al. Gate control of the electron spin-diffusion length in semiconductor quantum wells. Nat Commun, 4, 2372(2013).

    [3] X Y Zhou, R Uppu, Z Liu et al. On-chip nanomechanical filtering of quantum-dot single-photon sources. Laser Photonics Rev, 14, 1900404(2020).

    [4] M Ghali, K Ohtani, Y Ohno et al. Generation and control of polarization-entangled photons from GaAs Island quantum dots by an electric field. Nat Commun, 3, 661(2012).

    [5] J Schliemann. Colloquium: Persistent spin textures in semiconductor nanostructures. Rev Mod Phys, 89, 011001(2017).

    [6] S V Poltavtsev, I A Yugova, A N Kosarev et al. In-plane anisotropy of the hole g factor in CdTe/(Cd, Mg)Te quantum wells studied by spin-dependent photon echoes. Phys Rev Res, 2, 023160(2020).

    [7] P Klenovský, P Baranowski, P Wojnar. Excitonic fine structure of epitaxial Cd(Se, Te) on ZnTe type-II quantum dots. Phys Rev B, 105, 195403(2022).

    [8] E A Zhukov, D R Yakovlev, M M Glazov et al. Optical control of electron spin coherence in CdTe/(Cd, Mg)Te quantum wells. Phys Rev B, 81, 235320(2010).

    [9] M Ghali, J Kossut, W Heiss. Spin injection through different g-factor heterointerfaces using negative trions for spin detection. Appl Phys Lett, 82, 541(2003).

    [10] E A Zhukov, D R Yakovlev, M Gerbracht et al. Spin coherence of holes and electrons in undoped CdTe/(Cd, Mg)Te quantum wells. Phys Rev B, 79, 155318(2009).

    [11] M K Mohanta, F Is, A Kishore et al. Spin-current modulation in hexagonal buckled ZnTe and CdTe monolayers for self-powered flexible-piezo-spintronic devices. ACS Appl Mater Interfaces, 13, 40872(2021).

    [12] W Lei, R J Gu, J Antoszewski et al. GaSb: A new alternative substrate for epitaxial growth of HgCdTe. J Electron Mater, 43, 2788(2014).

    [13] W Lei, J Antoszewski, L Faraone. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl Phys Rev, 2, 041303(2015).

    [14] V S Varavin, S A Dvoretskii, N N Mikhailov et al. Molecular beam epitaxy of CdHgTe: Current state and horizons. Optoelectron Instrum Data Process, 56, 456(2020).

    [15] F Passmann, S Anghel, T Tischler et al. Persistent spin helix manipulation by optical doping of a CdTe quantum well. Phys Rev B, 97, 201413(2018).

    [16] P Y Su, C Lee, G C Wang et al. CdTe/ZnTe/GaAs heterostructures for single-crystal CdTe solar cells. J Electron Mater, 43, 2895(2014).

    [17] B Alshahrani, S Nabil, H I Elsaeedy et al. The pivotal role of thermal annealing of cadmium telluride thin film in optimizing the performance of CdTe/Si solar cells. J Electron Mater, 50, 4586(2021).

    [18] J Suela, I R B Ribeiro, S O Ferreira et al. Evolution of crystalline domain size and epitaxial orientation of CdTe/Si(111) quantum dots. J Appl Phys, 107, 064305(2010).

    [19] B S Chaudhari, H Goto, M Niraula et al. Analysis of dislocations and their correlation with dark currents in CdTe/Si heterojunction diode-type X-ray detectors. J Appl Phys, 130, 055302(2021).

    [20] Q Zhang, Y P Li, D Pagliero et al. Controlled growth of (100) or (111) CdTe epitaxial layers on (100) GaAs by molecular beam epitaxy and study of their electron spin relaxation times. J Vac Sci Technol B, 28, C3D1(2010).

    [21] J Zhao, Y P Zeng, C Liu et al. Effects of a ZnTe buffer layer on structural quality and morphology of CdTe epilayer grown on (001) GaAs by molecular beam epitaxy. Vacuum, 86, 1062(2012).

    [22] X L Zhu, J Q Wu, Q M Hu et al. Improved growth quality of epitaxial ZnTe thin films on Si (111) wafer with ZnSe buffer layer. J Vac Sci Technol A Vac Surf Films, 39, 063410(2021).

    [23] K D Park, M T Man, D Y Cho et al. Wide-gap photoluminescence control of quantum dots through atomic interdiffusion and bandgap renormalization. Nanophotonics, 9, 4799(2020).

    [24] S Ghosh, L N Rodrigues, L G Moura et al. Epitaxial growth and characterization of Cd1–xMnxTe films on Si(1 1 1) substrates. J Cryst Growth, 522, 25(2019).

    [25] J M Oliveira, A Malachias, C A Ospina et al. Nondestructive monitoring of defect evolution in epitaxial CdTe thin layers grown on Si(111). J Phys Chem C, 118, 1968(2014).

    [26] S O Ferreira, E C Paiva, G N Fontes et al. Characterization of CdTe quantum dots grown on Si(111) by hot wall epitaxy. J Appl Phys, 93, 1195(2003).

    [27] H Sakaki, T Noda, K Hirakawa et al. Interface roughness scattering in GaAs/AlAs quantum wells. Appl Phys Lett, 51, 1934(1987).

    [28] I Yamakawa, R Oga, Y Fujiwara et al. Atomic-scale observation of interfacial roughness and As–P exchange in InGaAs/InP multiple quantum wells. Appl Phys Lett, 84, 4436(2004).

    [29] D K Blanks, R N Bicknell, N C Giles-Taylor et al. Strain effects in Cd1–xMnxTe–CdTe superlattices. J Vac Sci Technol A Vac Surf Films, 4, 2120(1986).

    [30] A V Nurmikko, Y Hefetz, S K Chang et al. Influence of heterointerfaces on optical properties of CdTe/(Cd, Mn)Te and ZnSe/(Zn, Mn)Se superlattices. J Vac Sci Technol B Microelectron Process Phenom, 4, 1033(1986).

    [31] N C Giles-Taylor, R N Bicknell, D K Blanks et al. Photoluminescence of CdTe: A comparison of bulk and epitaxial material. J Vac Sci Technol A Vac Surf Films, 3, 76(1985).

    [32] C B Davis, D D Allred, A Reyes-Mena et al. Photoluminescence and absorption studies of defects in CdTe and ZnxCd1-xTe crystals. Phys Rev B Condens Matter, 47, 13363(1993).

    [33] D P Halliday, M D G Potter, J T Mullins et al. Photoluminescence study of a bulk vapour grown CdTe crystal. J Cryst Growth, 220, 30(2000).

    [34] Z Y Xu, J Z Xu, W K Ge et al. The excitonic properties and temperature behaviour of the photoluminescence from GaAs-GaAlAs multiple quantum well structures. Solid State Commun, 61, 707(1987).

    [35] S Adachi. Handbook on physical properties of semiconductors. Springer Science & Business Media, 1, 1(2004).

    [36] A E Zhukov, V M Ustinov, A Y Egorov et al. Negative characteristic temperature of InGaAs quantum dot injection laser. Jpn J Appl Phys, 36, 4216(1997).

    [37] G Karczewski, S Maćkowski, M Kutrowski et al. Photoluminescence study of CdTe/ZnTe self-assembled quantum dots. Appl Phys Lett, 74, 3011(1999).

    [38] M Godlewski, R Narkowicz, T Wojtowicz et al. Quasi-zero-dimensional excitons in quantum well structures of CdTe/CdMnTe. J Cryst Growth, 214/215, 420(2000).

    [39] S A Lourenço, I F L Dias, J L Duarte et al. Temperature-dependent photoluminescence spectra of GaAsSb/AlGaAs and GaAsSbN/GaAs single quantum wells under different excitation intensities. Braz J Phys, 37, 1212(2007).

    [40] Y I Mazur, V G Dorogan, M Benamara et al. Effects of spatial confinement and layer disorder in photoluminescence of GaAs1–xBix/GaAs heterostructures. J Phys D: Appl Phys, 46, 065306(2013).

    [41] M Kłopotowski, J A Nawrocki et al. Tunneling of spin polarized excitons in CdTe based asymmetric double quantum well structure. Solid State Commun, 119, 147(2001).

    [42] L Besombes, K Kheng, D Martrou. Exciton and biexciton fine structure in single elongated islands grown on a vicinal surface. Phys Rev Lett, 85, 425(2000).

    [43] Y M Wei, T M Zhao, B M Yao et al. Bright and highly-polarized single-photon sources in visible based on droplet-epitaxial GaAs quantum dots in photonic crystal cavities. Opt Mater Express, 10, 170(2019).

    [44] P Lodahl, S Mahmoodian, S Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys, 87, 347(2015).

    [45] Y Arakawa, M J Holmes. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl Phys Rev, 7, 021309(2020).

    [46] J X Zhang, J S Wildmann, F Ding et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat Commun, 6, 10067(2015).

    Leonarde N. Rodrigues, Wesley F. Inoch, Marcos L. F. Gomes, Odilon D. D. Couto Jr., Bráulio S. Archanjo, Sukarno O. Ferreira. Localized-states quantum confinement induced by roughness in CdMnTe/CdTe heterostructures grown on Si(111) substrates[J]. Journal of Semiconductors, 2024, 45(9): 092301
    Download Citation