• Matter and Radiation at Extremes
  • Vol. 7, Issue 3, 038404 (2022)
Cuiying Pei1、*, Tianping Ying2, Yi Zhao1, Lingling Gao1, Weizheng Cao1, Changhua Li1, Hideo Hosono3, and Yanpeng Qi1、4、5
Author Affiliations
  • 1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 3Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan
  • 4ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
  • 5Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
  • show less
    DOI: 10.1063/5.0088235 Cite this Article
    Cuiying Pei, Tianping Ying, Yi Zhao, Lingling Gao, Weizheng Cao, Changhua Li, Hideo Hosono, Yanpeng Qi. Pressure-induced reemergence of superconductivity in BaIr2Ge7 and Ba3Ir4Ge16 with cage structures[J]. Matter and Radiation at Extremes, 2022, 7(3): 038404 Copy Citation Text show less
    References

    [1] M. A.Kuzovnikov, M. I.Eremets, D. A.Knyazev, D. E.Graf, S. P.Besedin, F. F.Balakirev, L.Balicas, S.Mozaffari, E.Greenberg, A. P.Drozdov, M.Tkacz, V. B.Prakapenka, V. S.Minkov, P. P.Kong. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528(2019).

    [2] Y.Meng, M.Ahart, V. V.Struzhkin, M.Baldini, M.Somayazulu, A. K.Mishra, Z. M.Geballe, R. J.Hemley. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).

    [3] Z.Liu, P.Shan, Z.Zhao, F.Hong, J.Sun, L.Yang, P.Yang, X.Yu, J.Cheng, Y.Yin. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures. Chin. Phys. Lett., 37, 107401(2020).

    [4] X.Zhang, G.Yang, F.Li, Y.Zhao. Pressure-induced hydride superconductors above 200 K. Matter Radiat. Extremes, 6, 068201(2021).

    [5] X.-J.Chen, V.Prakapenka, H.-k.Mao, E.Greenberg, V.Struzhkin, B.Li, I.Troyan, C.Ji, A.Gavriliuk. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory. Matter Radiat. Extremes, 5, 028201(2020).

    [6] Y.Ding, H.-K.Mao, D.Wang. Future study of dense superconducting hydrides at high pressure. Materials, 14, 7563(2021).

    [7] Y.Sun, H.Liu, J.Lv, Y.Ma. Theory-orientated discovery of high-temperature superconductors in superhydrides stabilized under high pressure. Matter Radiat. Extremes, 5, 068101(2020).

    [8] M.Eremets, A.Sanna, J. A.Flores-Livas, R.Arita, L.Boeri, G.Profeta. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep., 856, 1-78(2020).

    [9] D. V.Semenok, I. A.Savkin, A. R.Oganov, A. G.Kvashnin, I. A.Kruglov. On distribution of superconductivity in metal hydrides. Curr. Opin. Solid State Mater. Sci., 24, 100808(2020).

    [10] F. F.Balakirev, P.Kong, L.Balicas, S.Chariton, A. P.Drozdov, V. B.Prakapenka, V. S.Minkov, S.Mozaffari, M. A.Kuzovnikov, M. I.Eremets, S. P.Besedin, E.Greenberg, D. A.Knyazev. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun., 12, 5075(2021).

    [11] A. R.Oganov, A. G.Kvashnin, V. V.Struzhkin, O. A.Sobolevskiy, M.Calandra, V. M.Pudalov, V. B.Prakapenka, A. G.Gavriliuk, R.Bianco, D. V.Semenok, I. S.Lyubutin, F.Mauri, A. G.Ivanova, I.Errea, A.Bergara, I. A.Troyan, A. V.Sadakov, R.Akashi, E.Greenberg, L.Monacelli. Anomalous high-temperature superconductivity in YH6. Adv. Mater., 33, 2006832(2021).

    [12] R. P.Dias, A.Salamat, E.Zurek, N.Dasenbrock-Gammon, E.Snider, R.McBride, K. V.Lawler, N.Meyers, X.Wang. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures. Phys. Rev. Lett., 126, 117003(2021).

    [13] A. R.Oganov, A. G.Kvashnin, I. A.Troyan, A. V.Sadakov, A. G.Ivanova, D. V.Semenok, O. A.Sobolevskiy, V. Y.Fominski, V.Svitlyk, V. M.Pudalov. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties. Mater. Today, 33, 36-44(2020).

    [14] T.Cui, B.Liu, C. J.Pickard, Q.Zhou, D.Zhou, H.Xie, D.Duan, X.Huang, X.Li, Q.Zhuang, Y.Huang. Polyhydride CeH9 with an atomic-like hydrogen clathrate structure. Nat. Commun., 10, 3461(2019).

    [15] N. P.Salke, A. R.Oganov, I. A.Kruglov, J.-F.Lin, J.Liu, Y.Zhang, V. B.Prakapenka, J.Zhou, Y.Wang, M. M.Davari Esfahani, E.Greenberg. Synthesis of clathrate cerium superhydride CeH9 at 80-100 GPa with atomic hydrogen sublattice. Nat. Commun., 10, 4453(2019).

    [16] A. R.Oganov, D. V.Semenok, H.Shu, X.Li, T.Cui, X.Huang, D.Duan, W.Chen. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 Megabar. Phys. Rev. Lett., 127, 117001(2021).

    [17] O. A.Sobolevskiy, I. A.Kruglov, K. V.Glazyrin, A. L.Vasiliev, A. V.Sadakov, D. N.Karimov, A. R.Oganov, N.Giordano, V. M.Pudalov, I. S.Lyubutin, R.Akashi, K. S.Pervakov, M.Hanfland, A. G.Kvashnin, I. A.Troyan, D. V.Semenok, A. G.Ivanova. Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today, 48, 18-28(2021).

    [18] R.Hoffmann, R. J.Hemley, I. I.Naumov, N. W.Ashcroft, H.Liu. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. U. S. A., 114, 6990-6995(2017).

    [19] X.Yang, H.Wang, Y.Zhao, M.Zhou, L.Ma, K.Wang, Y.Wang, G.Liu, X.Yu, Y.Xie, Y.Ma, H.Liu. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett., 128, 167001(2022).

    [20] Y.Qi, H.Lei, J.Guo, C.Felser, B.Yan, W.Shi, H.Hosono. Superconductivity in alkaline earth metal-filled skutterudites BaxIr4X12 (X = As, P). J. Am. Chem. Soc., 139, 8106-8109(2017).

    [21] O.Gunnarson. Superconductivity in fullerides. Rev. Mod. Phys., 69, 575(1997).

    [22] S.Lupi, D.Pontiroli, A.Cavalleri, A.Perucchi, D.Nicoletti, M.Riccò, S. R.Clark, A.Cantaluppi, D.Jaksch, P.Di Pietro, S.Kaiser, M.Mitrano. Possible light-induced superconductivity in K3C60 at high temperature. Nature, 530, 461-464(2016).

    [23] H.Hosono, Y.Qi, J.Guo, J.-i.Yamaura, S.Matsuishi, H.Lei. Superconductivity in Ban+2Ir4nGe12n+4 (n = 1, 2) with cage structure and softening of low-lying localized mode. Phys. Rev. B, 88, 140507(R)(2013).

    [24] H.Kito, H.Eisaki, Y.Gotoh, K.Oka, Y.Yanagi, I.Hase, S.Ishida, H.Fujihisa, A.Iyo, K.Kataoka, Y.Yoshida. Crystal structure and superconductivity of BaIr2Ge7 and Ba3Ir4Ge16 with two-dimensional Ba-Ge networks. J. Am. Chem. Soc., 136, 5245-5248(2014).

    [25] B.B?hme, Y.Prots, Y.Grin, M.Baitinger, W.Schnelle, H.Duong Nguyen, S.Paschen. Preparation, crystal structure and physical properties of the superconducting cage compound Ba3Ge16Ir4. Z. Anorg. Allg. Chem., 640, 760-767(2014).

    [26] J.Deng, Y.Zhao, H.Hosono, C.Li, P. K.Biswas, T.Ying, A.Bhattacharyya, D. T.Adroja, C.Pei, Y.Qi, W.Cao, L.Gao. Superconductivity in the layered cage compound Ba3Rh4Ge16. Chin. Phys. Lett., 38, 127402(2021).

    [27] W.Cao, C.Pei, C.Li, X.Chen, A. P.Schnyder, X.Wu, Y.Zhao, T.Ying, L.Gu, T.Yu, L.Gao, H.Hosono, Q.Zhang, Y.Qi, Q.Zhang. Caging-pnictogen-induced superconductivity in skutterudites IrX3 (X = As, P). J. Am. Chem. Soc., 144, 6208(2022).

    [28] W.Cao, P.Nemes-Incze, C.Pei, H.Liu, L.Gao, P.Huang, Y.Chen, Y.Zhao, G.Li, C.Li, Y.Qi, S.Jin, A.Vymazalova. Pressure-induced superconductivity and structure phase transition in Pt2HgSe3. Npj Quantum Mater., 6, 98(2021).

    [29] C.Pei, Y.Qi, Y.Chen, C.Felser, Q.Zhang, W.Shi, H.Zhu, Z.Liu, N.Yu, Y.Zhao, C.Li, W.Cao, S. A.Medvedev, L.Gao, Y.Li, Z.Wang, B.Yan, J.Gao. Pressure-induced a partial disorder and superconductivity in quasi-one-dimensional Weyl semimetal (NbSe4)2I. Mater. Today Phys., 21, 100509(2021).

    [30] P.Kong, G.Li, Q.Yin, H.Lei, W.Shi, Y.Chen, Y.Zhao, C.Wen, C.Pei, S.Yan, J.Li, L.Gao, Y.Wu, Q.Wang, Y.Qi. Charge density wave orders and enhanced superconductivity under pressure in the kagome metal CsV3Sb5. Adv. Mater., 33, 2102813(2021).

    [31] N.Li, H.Hosono, Y.Xia, L.Gao, Y.Qi, D.Zhang, B.Gao, Y.Zhao, T.Ying, G.Li, Y.Chen, C.Pei, H.Gou, J.Wu, W.Yang. Pressure-induced topological and structural phase transitions in an antiferromagnetic topological insulator. Chin. Phys. Lett., 37, 066401(2020).

    [32] L.Wang, C.Pei. Recent progress on high-pressure and high-temperature studies of fullerenes and related materials. Matter Radiat. Extremes, 4, 028201(2019).

    [33] H. K.Mao, J.Xu, P. M.Bell. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res.: Solid Earth, 91, 4673-4676(1986).

    [34] D.Hausermann, A. P.Hammersley, A. N.Fitch, M.Hanfland, S. O.Svensson. Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Res., 14, 235(1996).

    [35] A. C.Larson, R. B. V.Dreele. General structure analysis system (GSAS)(2004).

    [36] B. H.Toby. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr., 34, 210(2001).

    [37] X.Dong, M.Fang, X.Chen, X.Dai, K.Yang, J.Guo, L.Wang, Z.Zhao, C.Zhang, X.-J.Chen, Q.-Z.Huang, P.Gao, A.Li, H.-k.Mao, L.Sun, G.Chen, Q.Wu, H.Wang, D.Gu. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature, 483, 67-69(2012).

    [38] W. G.Yang, Y. L.Huang, H. X.Zhou, Y.Uwatoko, K.Zhang, K.Jin, G. M.Zhang, Z. X.Zhao, J. P.Sun, D. J.Singh, S. L.Ni, J.Sun, J.-G.Cheng, X. L.Dong, B. S.Wang, P.Shahi, G.Xing, F.Zhou, N. N.Li, K. Y.Chen. Reemergence of high-Tc superconductivity in the (Li1−xFex)OHFe1−ySe under high pressure. Nat. Commun., 9, 380(2018).

    [39] C.Huang, Y.Zhou, S.Qin, Z.Ren, C.Yang, J.Guo, S.Long, J.Hu, Q.Wu, S.Cai, K.Zhao, L.Sun, Q.Mu, A.Li, F.Cui, K.Yang. Reemergence of superconductivity in pressurized quasi-one-dimensional superconductor K2Mo3As3. Phys. Rev. Mater., 5, L021801(2021).

    [40] Y.Zhang, Z.Yang, X.Chen, J.Shao, L.Pi, Y.Zhou, Y.Zhou, C.An, W.Tong, X.Wang, C.Zhang, R.Zhang, C.Park. Pressure-induced reemergence of superconductivity in topological insulator Sr0.065Bi2Se3. Phys. Rev. B, 93, 144514(2016).

    [41] C. S.Gong, D. Z.Dai, X. F.Yang, C. C.Zhu, Q. W.Yin, Z. C.Tao, W.Xia, C. C.Zhao, Z. J.Tu, S. Y.Li, Y. F.Guo, H. C.Lei, L. S.Wang, C. P.Tu, B. Q.Song. Double-dome superconductivity under pressure in the V-based Kagome metals AV3Sb5 (A = Rb and K). Phys. Rev. B, 105, 094507(2022).

    [42] X.Chen, X.Zhan, X.Chen, J.-G.Guo, X.-B.Liu, X.Chen, J.Deng, X.Wang. Highly robust reentrant superconductivity in CsV3Sb5 under pressure. Chin. Phys. Lett., 38, 057402(2021).

    [43] Z.Chen, J.Zhou, Y.Yuan, Y.Zhou, Z.Yang, Z.Zhang, J.Wang, L.Zhang, X.Chen, H.Yang, S.Wang, X.Zhu, Y.Zhou, C.An. Pressure-induced reemergence of superconductivity in the topological kagome metal CsV3Sb5. Phys. Rev. B, 103, 224513(2021).

    [44] B. S.Chandrasekhar, C. K.Jones, J. K.Hulm. Upper critical field of solid solution alloys of the transition elements. Rev. Mod. Phys., 36, 74-76(1964).

    [45] R. B.Somoano, J. A.Woollam, P.O’Connor. Positive curvature of the Hc2-versus-Tc boundaries in layered superconductors. Phys. Rev. Lett., 32, 712-714(1974).

    [46] F.Birch. Finite elastic strain of cubic crystals. Phys. Rev., 71, 809-824(1947).

    Cuiying Pei, Tianping Ying, Yi Zhao, Lingling Gao, Weizheng Cao, Changhua Li, Hideo Hosono, Yanpeng Qi. Pressure-induced reemergence of superconductivity in BaIr2Ge7 and Ba3Ir4Ge16 with cage structures[J]. Matter and Radiation at Extremes, 2022, 7(3): 038404
    Download Citation