• Journal of Inorganic Materials
  • Vol. 38, Issue 4, 399 (2023)
Renrui FANG1,2, Kuan REN1, Zeyu GUO1,2, Han XU1,2..., Woyu ZHANG1,2, Fei WANG1,2, Peiwen ZHANG1,2, Yue LI1,2 and Dashan SHANG1,2,*|Show fewer author(s)
Author Affiliations
  • 11. Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
  • 22. University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20220519 Cite this Article
    Renrui FANG, Kuan REN, Zeyu GUO, Han XU, Woyu ZHANG, Fei WANG, Peiwen ZHANG, Yue LI, Dashan SHANG. Associative Learning with Oxide-based Electrolyte-gated Transistor Synapses[J]. Journal of Inorganic Materials, 2023, 38(4): 399 Copy Citation Text show less
    References

    [1] O MURAT, E NICOLAS, B M WANG et al. Nanosecond protonic programmable resistors for analog deep learning. Science, 377: 539(2022).

    [2] F X LIANG, T WANG, T H HOU. Progress and benchmark of spiking neuron devices and circuits. Advanced Intelligent Systems, 2100007(2021).

    [3] S ABU, L G MANUEL, K A RIDUAN et al. Memory devices and applications for in-memory computing. Nature Nanotechnology, 529(2020).

    [4] K YANG, J J YANG, R HUANG et al. Nonlinearity in memristors for neuromorphic dynamic systems. Small Science, 2: 2100049(2021).

    [5] J D ZHU, T ZHANG, Y C YANG et al. A comprehensive review on emerging artificial neuromorphic devices. Applied Physics Reviews, 7: 011312(2020).

    [6] N A NGUYEN, O SCHNEEGANS, R SALOT et al. An ultralow power LixTiO2-based synaptic transistor for scalable neuromorphic computing. Advanced Electronic Materials, 2200607(2022).

    [7] W Q ZHANG, B GAO, J S TANG et al. Neuro-inspired computing chips. Nature Electronics, 3: 371(2020).

    [8] H XU, J K LU, Y LI et al. Improvement of weight stability in Li-ion-based electrolyte-gated transistor synapse by silica protective process. Applied Physics Letters, 113505(2022).

    [9] H LEE, D G RYU, G LEE et al. Vertical metal-oxide electrochemical memory for high-density synaptic array based high-performance neuromorphic computing. Advanced Electronic Materials, 2200378(2022).

    [10] K NAYEON, K HEEBUM, W K HYUN et al. Understanding synaptic characteristics of nonvolatile analog redox transistor based on mobile ion-modulated-electrolyte thickness model for neuromorphic applications. Applied Physics Letters, 072105(2022).

    [11] J LEE, R D NIKAM, M KWAK et al. Improved synaptic characteristics of oxide-based electrochemical random access memory at elevated temperatures using integrated micro-heater. IEEE Transactions on Electron Devices, 69:, 2218(2022).

    [12] D N REVANNATH, J LEE, W CHOI et al. Ionic sieving through one-atom-thick 2D material enables analog nonvolatile memory for neuromorphic computing. Small, 2103543(2021).

    [13] G FENG, J JIANG, Y H ZHAO et al. A sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation. Advanced Materials, 1906171(2020).

    [14] J LEE, R D NIKAM, M KWAK et al. Strategies to improve the synaptic characteristics of oxygen-based electrochemical random-access memory based on material parameters optimization. ACS Applied Materials & Interfaces, 13450(2022).

    [15] Y C CHENG, H LI, B LIU et al. Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small, 2005217(2020).

    [16] Y LI, J K LU, D S SHANG et al. Oxide-based electrolyte-gated transistors for spatiotemporal information processing. Advanced Materials, 2003018(2020).

    [17] Y LI, Z H XUAN, J K LU et al. One transistor one electrolyte-gated transistor based spiking neural network for power-efficient neuromorphic computing system. Advanced Functional Materials, 2100042(2021).

    [18] Y LI, H XU, J K LU et al. Electrolyte-gated transistors with good retention for neuromorphic computing. Applied Physics Letters, 021901(2022).

    [19] V AUGUSTYN, J COME, M A LOWE et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 518(2013).

    [20] K J GRIFFITH, A C FORSE, J M GRIFFIN et al. High-rate intercalation without nanostructuring in metastable Nb2O5 bronze phases. Journal of the American Chemical Society, 8888(2016).

    [21] P A PRADEP, G R WADE. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. The Journal of Neuroscience, 5661(1996).

    [22] S Z ROBERT, W G REGEHR. Short-term synaptic plasticity. Annual Review of Physiology, 64: 355(2002).

    [23] I T WANG, C C CHANG, L W CHIU et al. 3D Ta/TaOx/TiO2/Ti synaptic array and linearity tuning of weight update for hardware neural network applications. Nanotechnology, 365204(2016).

    [24] J W JANG, S PARK, G W BURR et al. Optimization of conductance change in Pr1-xCaxMnO3-based synaptic devices for neuromorphic systems. IEEE Electron Device Letters, 457(2015).

    [25] J P MCGANN. Associative learning and sensory neuroplasticity: how does it happen and what is it good for. Learning & Memory, 567(2015).

    [26] J TRAXLER, V J MADDEN, G L MOSELEY et al. Modulating pain thresholds through classical conditioning. PeerJ, 7: 6486(2019).

    [27] R P MAURICIO, M E BITTERMAN. The role of contingency in classical conditioning. Psychological Review, 396(1990).

    [28] F YU, L Q ZHU, H XIAO et al. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and pavlovian associative learning activities. Advanced Functional Materials, 1804025(2018).

    Renrui FANG, Kuan REN, Zeyu GUO, Han XU, Woyu ZHANG, Fei WANG, Peiwen ZHANG, Yue LI, Dashan SHANG. Associative Learning with Oxide-based Electrolyte-gated Transistor Synapses[J]. Journal of Inorganic Materials, 2023, 38(4): 399
    Download Citation