[1] Levine B F. Quantum-well Infrared Photodetectors [J]. Journal of Applied Physics, 1993, 74(8): 181.
[2] Rogalski A. HgCdTe Infrared Detector Material: History, Status and Outlook [J]. Reports on Progress in Physics, 2005, 68(10): 22672336.
[3] Rogalski A, Martyniuk P, Kopytko M. InAs/GaSb Type-II Superlattice Infrared Detectors: Future Prospect [J]. Applied Physics Reviews, 2017, 4(3): 031304.
[4] Kinch M A. HgCdTe: Recent Trends in the Ultimate IR Semiconductor [J]. Journal of Electronic Materials, 2010, 39(7): 10431052.
[5] Kinch M A. Fundamentals of Infrared Detector Materials [J]. Journal of Electronic Materials, 2007, 29(6): 809817.
[6] Rogalski A. Recent Progress in Infrared Detector Technologies [J]. Infrared Physics & Technology, 2011, 54(3): 136154.
[8] Glozman A, Harush E, Jacobsohn E, et al. High Performance InAlSb MWIR Detectors Operating at 100 K and Beyond [C]. SPIE, 2006, 6206: 6206M1.
[9] Webster P, Riordan N, Liu S, et al. Absorption Properties of Type-II InAs/InAsSb Superlattices Measured by Spectroscopic Ellipsometry [J]. Applied Physics Letters, 2015, 106(6): 061907.
[10] Maimon S, Wicks G W. nBn Detector, an Infrared Detector with Reduced Dark Current and Higher Operating Temperature [J]. Applied Physics Letters, 2006, 89(15): 4429.
[11] Kim H, Cellek O, Lin Z-Y, et al. Long-wave Infrared nBn Photodetectors Based on InAs/InAsSb type-II Superlattices [J]. Applied Physics Letters, 2012, 101(16): 159.