• Journal of Inorganic Materials
  • Vol. 35, Issue 11, 1234 (2020)
Qi HOU, Maohuai WANG, Sen LIU, Hongbin DONG, Wenyue GUO, and Xiaoqing LU*
Author Affiliations
  • School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China
  • show less
    DOI: 10.15541/jim20190655 Cite this Article
    Qi HOU, Maohuai WANG, Sen LIU, Hongbin DONG, Wenyue GUO, Xiaoqing LU. Mechanisms of Hydrogen Purification in a Graphene-like Carbon Nitride Separation Membrane[J]. Journal of Inorganic Materials, 2020, 35(11): 1234 Copy Citation Text show less
    References

    [1] M BALAT. Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy, 33, 4013-4029(2008).

    [2] F MUELLER-LANGER, E TZIMAS, M KALTSCHMITT et al. Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. International Journal of Hydrogen Energy, 32, 3797-3810(2007).

    [3] A BODDIEN, B LOGES, H JUNGE et al. Hydrogen generation at ambient conditions: application in fuel cells. ChemSusChem: Chemistry & Sustainability Energy & Materials, 1, 751-758(2008).

    [4] M BRUEL. Application of hydrogen ion beams to silicon on insulator material technology. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 108, 313-319(1996).

    [5] S WEI, S ZHOU, Z WU et al. Mechanistic insights into porous graphene membranes for helium separation and hydrogen purification. Applied Surface Science, 441, 631-638(2018).

    [6] S ZHOU, Z WANG, M WANG et al. Nanoporous boron nitride membranes for helium separation. ACS Applied Nano Materials, 2, 4471-4479(2019).

    [7] M WANG, Z WANG, S ZHOU et al. Strain-controlled carbon nitride: a continuously tunable membrane for gas separation. Applied Surface Science, 506, 144675(2020).

    [8] F LI, Y QU, M ZHAO. Efficient helium separation of graphitic carbon nitride membrane. Carbon, 95, 51-57(2015).

    [9] Z MA, X ZHAO, Q TANG et al. Computational prediction of experimentally possible g-C3N3 monolayer as hydrogen purification membrane. International Journal of Hydrogen Energy, 39, 5037-5042(2014).

    [10] B XU, H XIANG, Q WEI et al. Two-dimensional graphene-like C2N: an experimentally available porous membrane for hydrogen purification. Physical Chemistry Chemical Physics, 17, 15115-15118(2015).

    [11] H CHEN, S ZHANG, W JIANG et al. Prediction of two-dimensional nodal-line semimetals in a carbon nitride covalent network. Journal of Materials Chemistry A, 6, 11252-11259(2018).

    [12] B DELLEY. From molecules to solids with the DMol 3 approach. Journal of Chemical Physics, 113, 7756-7764(2000).

    [13] P PERDEW J, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865(1996).

    [14] S GRIMME, J ANTONY, S EHRLICH et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132, 154104(2010).

    [15] A HALGREN T, N LIPSCOMB W. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chemical Physics Letters, 49, 225-232(1977).

    [16] H SUN. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 102, 7338-7364(1998).

    [17] L ZHU, Q XUE, X LI et al. C2N: an excellent two-dimensional monolayer membrane for He separation. Journal of Materials Chemistry A, 3, 21351-21356(2015).

    [18] Y LI, Y LIAO, Z CHEN. Be2C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. Angewandte Chemie International Edition, 53, 7248-7252(2014).

    [19] S BLANKENBURG, M BIERI, R FASEL et al. Porous graphene as an atmospheric nanofilter. Small, 6, 2266-2271(2010).

    [20] W HU, X WU, Z LI et al. Porous silicene as a hydrogen purification membrane. Physical Chemistry Chemical Physics, 15, 5753-5757(2013).

    [21] Y JIAO, A DU, M HANKEL et al. Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chemical Communications, 47, 11843-11845(2011).

    [22] S OYAMA, D LEE, P HACARLIOGLU et al. Theory of hydrogen permeability in nonporous silica membranes. Journal of Membrane Science, 244, 45-53(2004).

    [23] Z ZHU. Permeance should be used to characterize the productivity of a polymeric gas separation membrane. Journal of Membrane Science, 281, 754-755(2006).

    Qi HOU, Maohuai WANG, Sen LIU, Hongbin DONG, Wenyue GUO, Xiaoqing LU. Mechanisms of Hydrogen Purification in a Graphene-like Carbon Nitride Separation Membrane[J]. Journal of Inorganic Materials, 2020, 35(11): 1234
    Download Citation