• Acta Optica Sinica
  • Vol. 37, Issue 5, 529001 (2017)
Yin Jinying*, Zheng Yunong, Yang Hongyan, and Zhou Zhen
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201737.0529001 Cite this Article Set citation alerts
    Yin Jinying, Zheng Yunong, Yang Hongyan, Zhou Zhen. Effect of Relative Humidity of Atmospheric Aerosol on Radiation Properties of Soot Aggregate[J]. Acta Optica Sinica, 2017, 37(5): 529001 Copy Citation Text show less
    References

    [1] Zhang Xiaolin, Huang Yinbo, Rao Ruizhong. Light scattering analysis of an asymmetrical two-component aerosol particle model[J]. Acta Optica Sinica, 2013, 33(11): 1101001.

    [2] Li Shuwang, Shao Shiyong, Mei Haiping, et al. Simulation of atmospheric aerosol particle absorption characters based on photo-thermal interferometry[J]. Acta Optica Sinica, 2015, 35(11): 1101004.

    [3] Pan Xiaole. Observation study of atmospheric aerosol scattering characteristics as a function of relative humidity[D]. Beijing: China Observation Research Academy of Meteorological Sciences, 2007: 1-15.

    [4] Zong Pengcheng, Miao Qilong, Wei Xiaoyi. Effect of different mixing scenarioson aerosol radiative properties[J]. Research of Environmental Sciences, 2010, 23(5): 627-633.

    [5] Shiraiwa M, Kondo Y, Moteki N, et al. Evolution of mixing state of black carbon in polluted air from Tokyo[J]. Geophysical Research Letters, 2007, 34(16): L16803.

    [6] Khalizov A F, Xue H, Wang L, et al. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid[J]. The Journal of Physical Chemistry A, 2009, 113(6): 1066-1074.

    [7] Ben-David A, Embury J F, Davidson C E. Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications[J]. Applied Optics, 2006, 45(26): 6860-6875.

    [8] Lei Chengxin, Zhang Huafu, Liu Hanfa. Study of extinction characteristics of solar radiation by soot aerosols[J]. Acta Optica Sinica. 2010, 30(12): 3373-3377.

    [9] Lei Chengxin, Wu Zhensen, Feng Dongtai. Extinction characteristics of soot-silicate mixed agglomerates in random distribution[J]. Acta Optica Sinica. 2012, 32(4): 0429001.

    [10] Liu F, Smallwood G J. Radiative properties of numerically generated fractal soot aggregates: the importance of configuration averaging[J]. Journal of Heat Transfer, 2010, 132(2): 023308.

    [11] Wu Y, Cheng T H, Gu X F, et al. The single scattering properties of soot aggregates with concentric core-shell spherical monomers[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 135: 9-19.

    [12] Chen L Y, Jeng F T, Chen C C, et al. Hygroscopic behavior of atmospheric aerosol in Taipei[J]. Atmospheric Environment, 2003, 37(15): 2069-2075.

    [13] Prenni A J, DeMott P J, Kreidenweis S M. Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids[J]. Atmospheric Environment, 2003, 37(30): 4243-4251.

    [14] Brooks S D, DeMott P J, Kreidenweis S M. Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate[J]. Atmospheric Environment, 2004, 38(13): 1859-1868.

    [15] Hnel G. The size of atmospheric aerosol particles as a function of the relative humidity[J]. Beitraegezur Physikder Atmosphaere, 1970, 43: 119-132.

    [16] Tian Wenshou, Huang Qian, Chen Changhe. Calculation of effective refractive index of atmospheric aerosol and the effect of relative humidity on it[J]. Environmental Science, 1996, 17(3): 31-34.

    [17] Yang Jun, Li Zihua, Huang Shihong. Influence of relative humidity on shortwave radiative properties of atmospheric aerosol particles[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(2): 239-247.

    [18] Huang Honglian, Huang Yinbo, Han Yong, et al. Light extinction properties of marine aerosol particles in internal mixing state[J]. Journal of Atmospheric and Environmental Optics, 2007, 2(3): 179-183.

    [19] Freney E J, Adachi K, Buseck P R. Internally mixed atmospheric aerosol particles: hygroscopic growth and light scattering[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D19210.

    [20] Fan M, Chen L, Xiong X, et al. Scattering properties of soot-containing particles and their impact by humidity in 1.6 μm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 134: 91-103.

    [21] Kylü  , Faeth G M. Structure of overfire soot in buoyant turbulent diffusion flames at long residence times[J]. Combustion and Flame, 1992, 89(2): 140-156.

    [22] Yin Jinying, Liu Linhua. Analysis on feasibility of effective medium theory for radiative property of coal ash[J]. Proceedings of the CSEE, 2008, 28(14): 50-54.

    [23] Mishchenko M I, Travis L D, Lacis A A. Scattering, absorption, and emission of light by small particles[M]. Cambridge: Cambridge University Press, 2002.

    [24] Cheng T H, Gu X F, Wu Y, et al. The optical properties of absorbing aerosols with fractal soot aggregates: implications for aerosol remote sensing[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 125: 93-104.

    [25] Bohren C F, Huffman D R. Absorption and scattering of light by small particles[M]. New York: Wiley Interscience, 1998: 485-493.

    [26] Liu F, Smallwood G J. Radiative properties of numerically generated fractal soot aggregates: the importance of configuration averaging[J]. Journal of Heat Transfer, 2010, 132(2): 023308.

    CLP Journals

    [1] Wang Jiejun, Liu Xiaoyan, Zhang Yuting, Wang Xinqiang, Wang Fangyuan, Ye Song. Transmission Characteristics of Polarized Light in Aerosol[J]. Laser & Optoelectronics Progress, 2018, 55(8): 80103

    Yin Jinying, Zheng Yunong, Yang Hongyan, Zhou Zhen. Effect of Relative Humidity of Atmospheric Aerosol on Radiation Properties of Soot Aggregate[J]. Acta Optica Sinica, 2017, 37(5): 529001
    Download Citation