• Semiconductor Optoelectronics
  • Vol. 41, Issue 2, 242 (2020)
ZUO Bingxin1,2,*, ZENG Zhaohui2, LI Qixin2, LI Yelin2..., LIU Ningyang2, ZHAO Wei2, CHEN Zhitao2 and LI Yunping3|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2020.02.019 Cite this Article
    ZUO Bingxin, ZENG Zhaohui, LI Qixin, LI Yelin, LIU Ningyang, ZHAO Wei, CHEN Zhitao, LI Yunping. Study on Thermal Stability of Ohmic Contact of Pd/NiO/Al/Ni Reflective Electrode on p-GaN[J]. Semiconductor Optoelectronics, 2020, 41(2): 242 Copy Citation Text show less
    References

    [1] Kneissl M, Kolbe T, Chua C, et al. Advances in group Ⅲ-nitride-based deep UV light-emitting diode technology[J]. Semiconductor Science and Technol., 2010, 26(1): 014036.

    [2] Khan M A. AlGaN multiple quantum well based deep UV LEDs and their applications[J]. Physica Status Solidi (A), 2006, 203(7): 1764-1770.

    [3] Endruweit A, Johnson M S, Long A C. Curing of composite components by ultraviolet radiation: A review[J]. Polymer Composites, 2006, 27(2): 119-128.

    [4] Kneissl M, Rass J. Ⅲ-nitride ultraviolet emitters: Technology and applications[J]. Springer Series in Materials Science, 2016, 227: 415-434.

    [5] Shatalov M, Sun W, Lunev A, et al. 278nm deep ultraviolet LEDs with 11% external quantum efficiency[C]// IEEE 2012 70th Annual Device Research Conf. (DRC), 2012: 6257013.

    [6] Ichikawa M, Fujioka A, Kosugi T, et al. High-output-power deep ultraviolet light-emitting diode assembly using direct bonding[J]. Appl. Phys. Express, 2016, 9(7): 072101.

    [7] Kashima Y, Maeda N, Matsuura E, et al. High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer[J]. Appl. Phys. Express, 2018, 11(1): 012101.

    [8] Kim T, Yoo M C, Kim T. Cr/Ni/Au ohmic contacts to the moderately doped p- and n-GaN[J]. MRS Proc., 1996, 449: 1061.

    [9] Jang H W, Lee J L . Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN[J]. Appl. Phys. Lett., 2004, 85(24): 5920.

    [10] Jeng M J, Shiue C C, Chang L B. The reflectivity of Mo/Ag/Au ohmic contacts on p-type GaN for flip-chip light-emitting diode (FCLED) applications[J]. Appl. Surface Science, 2008, 254(15): 4479-4482.

    [11] Oh M, Jeong S, Gil Y, et al. Highly reflective Ti/Ag/Pt contacts to p-GaN for high-efficiency GaN-based light-emitting diodes[J]. Jap. J. of Appl. Phys., 2015, 54(2): 02BB01.

    [12] Takano T, Mino T, Sakai J, et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275nm achieved by improving light-extraction efficiency[J]. Appl. Phys. Express, 2017, 10(3): 031002.

    [13] Edwards J D. Reflecting surfaces of aluminum[J]. J. of the Society of Motion Picture Engineers, 2015, 24(2): 126-132.

    [14] Cho H K, Ostermay I, Zeimer U, et al. Highly reflective p-contacts made of Pd-Al on deep ultraviolet light-emitting diodes[J]. IEEE Photon. Technol. Lett., 2017, 29(24): 2222-2225.

    [15] Jang H W, Kim K H, Kim J K, et al. Low-resistance and thermally stable ohmic contact on p-type GaN using Pd/Ni metallization[J]. Appl. Phys. Lett., 2001, 79(12): 1822-1824.

    [16] Chen G T, Pan C C, Fang C S, et al. High-reflectivity Pd/Ni/Al/Ti/Au ohmic contacts to p-type GaN for ultraviolet light-emitting diodes[J]. Appl. Phys. Lett., 2004, 85(14): 2797.

    [17] Pan C C, Chen G T, Hsu W J, et al. Thermal stability improvement by using Pd/NiO/Al/Ti/Au reflective ohmic contacts to p-GaN for flip-chip ultraviolet light-emitting diodes[J]. Appl. Phys. Lett., 2006, 88(6): 062113.

    [18] Li Hongjian, Shi Ying. Measurement and calculation of specific contact resistance in metal-semiconductor contacts[J]. Semiconductor Technol., 2008, 33(2): 155-159.

    ZUO Bingxin, ZENG Zhaohui, LI Qixin, LI Yelin, LIU Ningyang, ZHAO Wei, CHEN Zhitao, LI Yunping. Study on Thermal Stability of Ohmic Contact of Pd/NiO/Al/Ni Reflective Electrode on p-GaN[J]. Semiconductor Optoelectronics, 2020, 41(2): 242
    Download Citation