• Chinese Journal of Quantum Electronics
  • Vol. 20, Issue 4, 391 (2003)
[in Chinese]* and [in Chinese]
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    [in Chinese], [in Chinese]. Raman Spectra by Use of Liquid Core Optical Fibers and its Development[J]. Chinese Journal of Quantum Electronics, 2003, 20(4): 391 Copy Citation Text show less
    References

    [1] Walrafen G E, Stone J. Intensification of spontaneous Raman spectra by use of liquid core optical fibers [J]. Appl. Spectrosc., 1972, 26 (6): 585-589

    [2] Schwab S D, McCreery R L. Remote, long path cell for high sensitivity Raman spectroscopy [J]. Appl. Spectrosc.,1987, 41 (1): 126-130

    [3] Tsunoda K I, Nomura A, Yamada J, et al. The possibility of signal enhancement in liquid absorption spectrometry with a long capillary cell utilizing successive total reflection at the outer cell surface [J]. Appl. Spectrosc., 1989, 43(1): 49-55

    [4] Altkon R, Koev I, Gottlieb A. Waveguide capillary cell for low-refractive-index liquids [J]. Appl. Spectrosc., 1997, 51(10): 1554-1558

    [5] Aust J F, Booksh K S, Myrick M L. Novel In-situ probe for monitoring polymer curing [J]. Appl. Spectrosc., 1996, 50 (3): 382-387

    [6] Benoit V, Yappert M C. Characterization of a simple Raman capillary/fiber optical sensor [J]. Anal. Chem.,1996, 68(13): 2255-2258

    [7] Waterbury R D, Rao W, Byrne R H. Long pathlength absorbance spectroscopy: trace analysis of Fe(Ⅱ) using a 4.5 m liquid core waveguide [J]. Anal. Chim. Acta, 1997, 357 (1-2): 99-102

    [8] Purnendu K D, Zhang Genfa, Li Jianzhong, et al. Luminescence detection with a liquid core waveguide [J]. Anal. Chem., 1999, 71(7): 1400-1407

    [9] Gooijer C, Hoornweg G, Beer T, et al. Detector cell based on plastic liquid-core waveguides suitable for aqueous solutions: one-to-two decades improved detection limits in conventional-size column liquid chromatography with absorption detection [J]. J. Chromatogr. A, 1998, 824 (1): 1-5

    [10] Altkorn R, Koev I, Van Duyne R P, et al. Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization and application in Raman spectroscopy [J]. Appl. Opt., 1997, 36(34): 8992-8998

    [11] Li Song, Liu Suyi, et al. Application of liquid waveguide to Raman spectroscopy in aqueous solution [J]. Appl. Spectrosc., 1998, 52 (10): 1364-1367

    [12] Altkorn R, Malinsky M D, Van Duyne R P, et al. Intensity considerations in liquid core optical fiber Raman spectroscopy [J]. Appl. Spectrosc., 2001, 55 (4): 373-381

    [13] Affleck R, Ambrose W P, Demas J N, et al. Reduction of luminescent background in ultrasensitive fluorescence detection by photobleaching [J]. Anal. Chem., 1996, 68(13): 2270-2276

    [14] Hamaguchi H, Tahara T, Tasumi M. Suppression of luminescence background in Raman spectroscopy by means of transient optical depletion of casual impurity molecules [J]. Appl. Spectrosc., 1987, 41(8): 1265-1268

    [15] Pelletier M J, Altkorn R. Efficient elimination of fluorescence background from Raman spectra collected in a liquid core optical fiber [J]. Appl. Spectrosc., 2000, 54(12 ): 1837-1841

    [16] Altkorn R, Koev I, Pelletier M. Raman performance characteristics of teflon AF 2400 liquid-core optical-fiber sample cells [J]. Appl. Spectrosc., 1999, 53(10): 1169-1176

    [17] Zhou J Y, Wang H Z, Yu Z X. Efficient generation of ultrafast broadband radiation in a submillimeter liquid-core waveguide [J]. Appl. Phys. Lett., 1990, 57 (7): 643-644

    [18] Zhou J Y, Wang H Z, Huang X G, et al. Generation of frequency-tunable ultrashort optical pulses with liquid-core fibers [J]. Opt. Lett., 1991, 16(23): 1865-1867

    [20] Li Jianzhong, Dasgupta P K, Zhang Genfa. Transversely illuminated liquid core waveguide based fluorescence detection: Fluorometric flow injection determination of aqueous ammonium/ammonia [J]. Talanta, 1999, 50(3): 617-623

    [21] Holtz M, Dasgupta P K, Zhang Genfa. Small volume Raman spectroscopy with a liquid core waveguide [J]. Anal. Chem., 1999, 71(14): 2934-2938

    [22] Dasgupta P K, Zhang Genfa, Poruthoor S K, et al. High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection [J]. Anal. Chem., 1998, 70(22): 4661-4669

    [23] Dong J, Dinakarpandian D, Carey P R. Extending the Raman analysis of biological samples to the 100 micromolar concentration range [J]. Appl. Spectrosc., 1998, 52(8): 1117-1122

    [24] Pelletier M J, Altkorn R. Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical fiber cell [J]. Anal. Chem., 2001, 73(6 ): 1393-1397

    [25] Budinova G, Salva J, Volka K. Application of molecular spectroscopy in the mid-infrared region to the determi nation of glucose and cholesterol in whole blood and in blood serum [J]. Appl. Spectrosc., 1997, 51(5): 631-635

    [26] Spanner G, Niessner R. New concept for the non-invasive determination of physiological glucose concentrationusing modulated laser diodes [J]. Fresenius' J. Anal. Chem., 1996, 354(3): 306-310

    [27] Cameron B D, Cote G L. Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach [J]. IEEE Trans. Biomed. Eng., 1997, 44:1221-1227

    [28] Bruulsema J T, Hayward J E, Farrell T J, et al. Correlation betweenblood glucose concentration in diabetics andnoninvasivelymeasured tissue optical scattering coefficient [J]. Opt. Lett., 1997, 22(3): 190-192

    [29] Spanner G, Niessner R. Noninvasive determination of blood contents using an array of modulated laser diodes and a photoacoustic sensor head [J]. Fresenius J. Anal. Chem., 1996, 355(3-4): 327-328

    [30] Erckens R J, Motamedi M, March W F, et al. Raman spectroscopy for non-invasive characterization of oculartissue: Potential for detection of biological molecules [J]. J. Raman. Spectrosc., 1997, 28(5): 293-299

    [31] Dou X, Yamaguchi Y, Yamamoto H, et al. Biological applications of anti-stokes Raman spectroscopy: quantita tive analysis of glucose in plasma and serum by a highly sensitive multichannel Raman spectrometer [J]. Appl. Spectrosc., 1996, 50(10): 1301-1306

    [32] Tarr R V, Steffes P G. The non-invasive measure of D-glucose in the ocular aqueous humor using stimulated Raman spectroscopy [J]. IEEE/LEOS Newsletter, 1998, 12(2): 22-27. or http://www.ieee.org/organizations/ pubs/newslet ters/leos/apr98/dgloucose.htm [OL]

    [33] Berger A J, Itzkan I, Feld M S. Feasibility of measuring blood glucose concentration by near- infrared Ramanspectroscopy [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1997, 53(2): 287-292

    [35] Altkorn R, Koev I, Van Duyne R P, et al. Low-loss liquid-core optical fiber for low-refractive-index liquids: Fabrication, characterization, and application in Raman spectroscopy [J]. Appl. Opt., 1997, 36(34): 8992-8998

    [36] Cooper S D, Robson M M, Batchelder D N, et al. Development of a universal Raman detector for microchro matography development of a universal Raman detector for microchromatography [J]. Chromatographia, 1997, 44(5-6): 257-262

    [37] Nguyen H T D, Jouan M, Nguyen Q D, et al. Coupling of high-performance liquid chromatography with Raman spectrometry [J]. J. Chromatogr. A, 1996, 743(2): 323-327

    [38] Cabalin L M, Rúperezy A, Laserna J J. Flow injection analysis and liquid chromatography detected by SERS using a windowless flow cell [J]. Anal. Chim. Acta, 1996, 318(2): 203-210

    [39] Dijkstra R J, Bader A N, Hoornweg G Ph, et al. On-line coupling of column liquid chromatography and Raman spectroscopy using a liquid core waveguide. Anal. Chem., 1999, 71(20 ): 4575-4579

    [40] Holtz M, Dasgupta P, Zhang G. Small-volume Raman spectroscopy with a liquid core waveguide [J]. Anal. Chem., 1999, 71(14): 2934-2938

    [in Chinese], [in Chinese]. Raman Spectra by Use of Liquid Core Optical Fibers and its Development[J]. Chinese Journal of Quantum Electronics, 2003, 20(4): 391
    Download Citation