• Laser & Optoelectronics Progress
  • Vol. 50, Issue 2, 20009 (2013)
Zeng Feng* and Zhang Zhenjuan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop50.020009 Cite this Article Set citation alerts
    Zeng Feng, Zhang Zhenjuan. Applications Progress of Quantum Dots in Optical Amplifiers[J]. Laser & Optoelectronics Progress, 2013, 50(2): 20009 Copy Citation Text show less
    References

    [1] B. J. Ainslie. A review of the fabrication and properties of erbium-doped fibers for optical amplifiers[J]. J. Lightware Technol., 1991, 9(2): 220~227

    [2] YibinLu, P. L. Chu, A. Alphones et al.. A 105-nm ultrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel configuration[J]. IEEE Photon. Technol. Lett., 2004, 16(7): 1640~1642

    [3] C. R. Giles, E. Desurvire. Modeling erbium-doped fiber amplifiers [J]. J. Lightwave Technol., 1991, 9(2): 271~283

    [4] Wu Wuming, Yang Weiqiang, Xiao Hu et al.. High efficiency inband core-pumped erbium/ytterbium-codoped fiber amplifier[J]. Laser & Optoelectronics Progress, 2012, 49(6): 060605

    [5] Song Meimei, Feng Sujuan, Mao Qinghe. Influences of pump schemes on gain properties of L-band double-pass erbium-doped fiber amplifiers[J]. Acta Optica Sinica, 2010, 30(3): 681~685

    [6] XueFeng, Xiaoming Liu, Jiangde Peng. Numerical comparison on the characteristics between backward and bi-directionally pumped DFRAs in hybrid Raman/EDFAs[J]. Chin. Opt. Lett., 2005, 3(5): 257~260

    [7] Zhou Huijuan, Chen Mo, Chen Wei et al.. Brillouin-erbium fiber laser with ultra-short ring cavity[J]. Chinese J. Lasers, 2012, 39(7): 0702010

    [8] L. Esaki, R Tsu. Superlattice and negative differential conductivity in semiconductors[J]. IBM. Res. Dev., 1970, 14(1): 61~65

    [9] A. Henglein. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles[J]. Chem. Rev., 1989, 89(8): 1861~1873

    [10] A. D. Yoffe . Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems[J]. Adv. Phys., 2001, 50(1): 1~208

    [11] J. Aldana, Y. A. Wang, Xiaogang Peng. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols [J]. J. Am. Chem. Soc., 2001, 123(36): 8844~8850

    [12] W. W. Yu, Lianhua Qu, Wenzhuo Guo et al.. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals [J]. Chem. Mater., 2003, 15(14): 2854~2860

    [13] Cheng Cheng, Wang Ruodong, Yan Jinhua. PbSe/PMMA quantum dot-doped fiber materials fabricated by a bulk polymerization method[J]. Acta Optica Sinica, 2011, 31(6): 0616005

    [14] C. B. Murray, Shouheng Sun, W. Gaschler et al.. Colloidal synthesis of nanocrystals and nanocrystal superlattices [J]. IBM J. Res. Dev., 2001, 45(1): 47~56

    [15] LianhuaQu, Xiaogang Peng. Control of photoluminescence properties of CdSe nanocrystals in growth[J]. J. Am. Chem. Soc., 2002, 124(9): 2049~2055

    [16] D. Bimberg. Quantum dots for lasers, amplifiers and computing[J]. J. Phys. D: Appl. Phys., 2005, 38(13): 2055~2058

    [17] Yu Yi. Theoretical Investigation on InAs/GaAs Quantum Dot Semiconductor Optical Amplifier and Quantum Dot Fabrication[D]. Wuhan: Huazhong University of Science and Technology, 2011. 62~64

    [18] Tian Peng. Growth of InAs/GaAs Quantum Qots and Fabrication of Two-Section Semiconductor Optical Amplifiers[D]. Wuhan: Huazhong University of Science and Technology, 2011. 83~90

    [19] Dymax Corporation. OP-4-20632: Ultra Light-Weld High Tg Light Path Adhesive for Fiber Optic Assembly [OL]. http://www.dymax.com/products/adhesive_products/op-4-20632-series. php, 2010

    [20] E. V. Kolobkova, A. A. Lipovskii, V. D. Petrikov et al.. Fluorophosphate glasses containing PbSe quantum dots[J]. Glass Phys. Chem., 2002, 28(4): 246~250

    [21] Cheng Cheng, Zeng Feng, Cheng Xiaoyu. Photoluminescence spectra of CdSe/ZnS-quantum dot doped fiber with high doping concentrations[J]. Acta Optica Sinica, 2009, 29(10): 2698~2704

    [22] F. W. Wise. Lead salt quantum dots: the limit of strong quantum confinement[J]. Acc. Chem. Res., 2000, 33(11): 773~780

    [23] I. Kang, F. W. Wise. Electronic structure and optical properties of PbS and PbSe quantum dots [J]. J. Opt. Soc. Am. B, 1997, 14(7): 1632~1646

    [24] R. S. Silva, P. C. Morais, A. M. Alcalde et al.. Optical properties of PbSe quantum dots embedded in oxide glass[J]. J. Non-Cryst. Solids, 2006, 352(32-35): 3522~3524

    [25] V. G. Melekhin, E. V. Kolobkova, A. A. Lipovskii et al.. Fluorophosphate glasses doped with PbSe quantum dots and their nonlinear optical characteristics[J]. Glass Phys. Chem., 2008, 34(4): 351~355

    [26] Jieun Chang, Chao Liu, Jong Heo. Optical properties of PbSe quantum dots doped in borosilicate glass [J]. J. Non-Crys. Solids, 2009, 355(37-42): 1897~1899

    [27] Cheng Cheng, Jiang Huil, Ma Dewei. PbSe quantum dot-doped sodium-aluminum-borosilicate glass fabricated by a melting method[J]. Acta Optica Sinica, 2011, 31(2): 0216005

    [28] H. Ghaforui-Shiraz. The Principles of Semiconductor Laser Diodes and Amplifiers: Analysis and Transmission Line Laser Modelling[M]. London: Imperial College Press, 2004. 15~39

    [29] N. K. Dutta, Qiang Wang. Semiconductor Optical Amplifiers[M]. Singapore: World Scientific Publishing, 2006. 1~32

    [30] O. Qasaimeh. Optical gain and saturation characteristics of quantum-dot semiconductor optical amplifiers[J]. IEEE J. Quantum Electron., 2003, 39(6): 793~798

    [31] T. Akiyama, T. Shimoyama, H. Kuwatsuka et al.. Gain nonlinearity and ultrafast carrier dynamics in quantum dot optical amplifiers[c].25th European Conference on Optical Communication, 1999. II-76

    [32] P. Borri, W. Langbein, J. M. Hvam et al.. Ultrafast gain and index dynamics in quantum dot amplifiers[C]. 25th European Conference on Optical Communication, 1999. Ⅱ-74

    [33] T. Akiyama, M. Sugawara, M. Ekawa et al.. Quantum-dot semiconductor optical amplifiers[J]. Proc. IEEE, 2007, 95(9): 1757~1766

    [34] A. Rostami, H. Nejad, R. M. Qartavol et al.. Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers[J]. IEEE J. Quantum Electron., 2010, 46(3): 354~360

    [35] H. Taleb, K. Abedi, S. Golmohammadi. Dynamic response of quantum-dot semiconductor optical amplifiers electrical, optical, and electro-optical pumping schemes[C]. 2012 20th Iranian Conference on Electrical Engineering, 2012. 1458~1461

    [36] E. Mohadesrad, K. Abedi. Two and three-electrode structure for quantum-dot semiconductor optical amplifiers[C]. 2012 20th Iranian Conference on Electrical Engineering, 2012. 217~222

    [37] E. Mohadesrad, K. Abedi. Electrode lengths optimization for two-electrode quantum-dot semiconductor optical amplifiers[C]. 2012 20th Iranian Conference on Electrical Engineering, 2012. 281~285

    [38] F. Wise. Quantum dots call the shots [J]. OEMagazine, 2002, (10): 24~27

    [39] O. Qasaimeh. An analytical model for quantum dot semiconductor optical amplifiers[J]. Opt. Commun., 2003, 222(1-6): 277~287

    [40] Cheng Cheng, Zhang Hang. A semiconductor nanocrystal PbSe quantum dot fiber amplifier[J]. Acta Physica Sinica, 2006, 55(8): 4139~4144

    [41] Zeng Feng. Study on Spectral Characteristics of CdSe/ZnS Quantum-Dot Doped Fibers with High Doping Concentrations[D]. Zhejiang: Zhejiang University of Technology, 2010. 45~50

    [42] Wang Kexin, Pang Fufei, Wang Tingyun. Evanescent wave coupled semiconductor quantum dots fiber amplifier[J]. Chinese J. Lasers, 2007, 34(3): 398~401

    [43] Sun Xiaolan, Dong Yanhua, Li Chao et al.. PbSe semiconductor quantum dots fiber amplifier based on sol-gel self-assembly method[C]. 2010 Asia Communications and Photonics Conference and Exhibition, 2010. 425~426

    [44] Hairun Guo, Fufei Pang, Xianglong Zeng et al.. PbS quantum dot fiber amplifier based on a tapered SMF fiber[J]. Opt. Commun., 2012, 285(13-14): 3222~3227

    CLP Journals

    [1] Zeng Feng, Zhu Xiaojun, Wang Wei. Research on Background of the CdSe/ZnS Quantum-Dot Doped Fiber[J]. Laser & Optoelectronics Progress, 2014, 51(1): 10606

    Zeng Feng, Zhang Zhenjuan. Applications Progress of Quantum Dots in Optical Amplifiers[J]. Laser & Optoelectronics Progress, 2013, 50(2): 20009
    Download Citation