• Acta Optica Sinica
  • Vol. 41, Issue 20, 2027001 (2021)
Xiuzai Zhang1、2、*, Xi Xu1, and Bangyu Liu1
Author Affiliations
  • 1School of Electronic and Information Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China;
  • 2Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China;
  • show less
    DOI: 10.3788/AOS202141.2027001 Cite this Article Set citation alerts
    Xiuzai Zhang, Xi Xu, Bangyu Liu. Influence of Cirrus Clouds on Space-to-Earth Quantum Communication Channels in Free Space[J]. Acta Optica Sinica, 2021, 41(20): 2027001 Copy Citation Text show less
    Relationships between extinction efficiency factor and maximum particle size for ice crystal particles with different shapes. (a) Hexagonal plate; (b) hexagonal prism; (c) hollow hexagonal prism; (d) four bullet roses; (e) space bullet roses; (f) polymer
    Fig. 1. Relationships between extinction efficiency factor and maximum particle size for ice crystal particles with different shapes. (a) Hexagonal plate; (b) hexagonal prism; (c) hollow hexagonal prism; (d) four bullet roses; (e) space bullet roses; (f) polymer
    Relationship among link attenuation, cirrus cloud ice water content, and transmission distance
    Fig. 2. Relationship among link attenuation, cirrus cloud ice water content, and transmission distance
    Relationship among channel capacity, cirrus cloud ice water content, and transmission distance
    Fig. 3. Relationship among channel capacity, cirrus cloud ice water content, and transmission distance
    Relationship among teleportation fidelity, parameters μ, and cirrus cloud noise probability
    Fig. 4. Relationship among teleportation fidelity, parameters μ, and cirrus cloud noise probability
    Relationship among channel entanglement, cirrus cloud ice water content, and transmission distance
    Fig. 5. Relationship among channel entanglement, cirrus cloud ice water content, and transmission distance
    Ice crystal particle shapea0a1a2a3a4
    Hexagonal plate0.437730.754970.19033×10-10.35191×10-3-0.70782×10-4
    Hexagonal prism0.334010.364770.30855-0.55631×10-10.30162×10-2
    Hollow hexagonal prism0.334010.364770.30855-0.55631×10-10.30162×10-2
    Four bullet roses0.159090.843080.70161×10-2-0.11003×10-20.45161×10-4
    Space bullet roses0.141950.843940.72125×10-2-0.11219×10-20.45819×10-4
    Polymer-0.477371.00260-0.10030×10-20.15166×10-3-0.78433×10-5
    Table 1. Fitting coefficients of equivalent area sphere diameter
    Ice crystal particle shapea0a1a2a3a4
    Hexagonal plate0.312290.808740.29287×10-2-0.44378×10-3-0.23109×10-4
    Hexagonal prism0.305810.262520.35458-0.63202×10-10.33755×10-2
    Hollow hexagonal prism0.245680.262020.35479-0.63236×10-10.33773×10-2
    Four bullet roses-0.097940.856830.29483×10-2-0.14341×10-20.74627×10-4
    Space bullet roses-0.103180.862900.70665×10-3-0.11055×10-20.57906×10-4
    Polymer-0.701600.99215-0.29322×10-20.40492×10-3-0.18841×10-4
    Table 2. Fitting coefficients of equivalent volume ball diameter
    Xiuzai Zhang, Xi Xu, Bangyu Liu. Influence of Cirrus Clouds on Space-to-Earth Quantum Communication Channels in Free Space[J]. Acta Optica Sinica, 2021, 41(20): 2027001
    Download Citation