• Acta Optica Sinica
  • Vol. 41, Issue 7, 0706005 (2021)
Jun Li1、2, Jianghua Luo2、3, and Xiuhua Yuan1、*
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • 2School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
  • 3National Mobile Communications Research Laboratory, Southeast University, Nanjing, Jiangsu 210096, China
  • show less
    DOI: 10.3788/AOS202141.0706005 Cite this Article Set citation alerts
    Jun Li, Jianghua Luo, Xiuhua Yuan. Influence of Water Surface Wave Disturbance on Wireless Optical Communication[J]. Acta Optica Sinica, 2021, 41(7): 0706005 Copy Citation Text show less
    References

    [1] Ma L, Zhou S L, Qiao G et al. Superposition coding for downlink underwater acoustic OFDM[J]. IEEE Journal of Oceanic Engineering, 42, 175-187(2017).

    [2] Goh J H, Shaw A. Al-Shamma'a A I. Underwater wireless communication system[J]. Journal of Physics: Conference Series, 178, 012029(2009).

    [3] Zhao T F, Wang J, Zhang J et al. Neighbor discovery method for frogmen cooperation in underwater wireless optical communication[J]. Acta Optica Sinica, 38, 1206002(2018).

    [4] Zeng Z Q, Fu S, Zhang H H et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 19, 204-238(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=c36728202f2edba803bee96545ff8b59

    [5] Tian P F, Liu X Y, Yi S Y et al. High-speed underwater optical wireless communication using a blue GaN-based micro-LED[J]. Optics Express, 25, 1193-1201(2017).

    [6] Kaushal H, Kaddoum G. Underwater optical wireless communication[J]. IEEE Access, 4, 1518-1547(2016). http://ieeexplore.ieee.org/document/7450595

    [7] Wang J M, Lu C H, Li S B et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 27, 12171-12181(2019).

    [8] Wu T C, Chi Y C, Wang H Y et al. Blue laser diode enables underwater communication at 12.4 Gbps[J]. Scientific Reports, 7, 40480(2017).

    [9] Wang C, Yu H Y, Zhu Y J. A long distance underwater visible light communication system with single photon avalanche diode[J]. IEEE Photonics Journal, 8, 1-11(2016).

    [10] Dinh D V, Quan Z H, Roycroft B et al. GHz bandwidth semipolar (112-2) InGaN/GaN light-emitting diodes[J]. Optics Letters, 41, 5752-5755(2016).

    [11] Xu J, Kong M, Lin A et al. Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication[J]. Optics Letters, 42, 1664-1667(2017).

    [12] Kong M W, Lv W, Ali T et al. 10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication[J]. Optics Express, 25, 20829-20834(2017).

    [13] Fei C, Hong X, Zhang G et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 26, 34060-34069(2018).

    [14] Shen C, Guo Y J, Sun X B et al. Going beyond 10-meter, Gbit/s underwater optical wireless communication links based on visible lasers[C]∥2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), July 31-August 4, 2017, Singapore.(2017).

    [15] Liu X Y, Yi S Y, Liu R et al[J]. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser with NRZ-OOK modulation Optics Express, 25, 27937-27947.

    [16] Anous N, Abdallah M, Qaraqe K. Performance evaluation for vertical inhomogeneous underwater visible light communications[C]∥2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), September 24-27, 2017, Toronto, ON, Canada.(2017).

    [17] Jamali M V, Salehi J A, Akhoundi F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme[J]. IEEE Transactions on Communications, 65, 1176-1192(2017).

    [18] Elamassie M, Miramirkhani F, Uysal M. Performance characterization of underwater visible light communication[J]. IEEE Transactions on Communications, 67, 543-552(2019).

    [19] Chen Y, Kong M, Ali T et al. 26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode[J]. Optics Express, 25, 14760-14765(2017).

    [20] Niu C J, Lu F, Han X E. Propagation properties of Gaussian array beams transmitted in oceanic turbulence simulated by phase screen method[J]. Acta Optica Sinica, 38, 0601004(2018).

    [21] Sun Y L, Zhang J R, Lu Z Z. Propagation characteristics of Laguerre-Gaussian vortex beams in underwater turbulence[J]. Acta Optica Sinica, 39, 1001005(2019).

    [22] Vali Z, Gholami A, Ghassemlooy Z et al. Experimental study of the turbulence effect on underwater optical wireless communications[J]. Applied Optics, 57, 8314-8319(2018).

    [23] Huang A P, Tao L W, Wang C et al. Error performance of underwater wireless optical communications with spatial diversity under turbulence channels[J]. Applied Optics, 57, 7600-7608(2018). http://www.ncbi.nlm.nih.gov/pubmed/30461828

    [24] Li Y M, Leeson M S, Li X F. Impulse response modeling for underwater optical wireless channels[J]. Applied Optics, 57, 4815-4823(2018). http://www.ncbi.nlm.nih.gov/pubmed/30118097

    [25] Jamali M V, Akhoundi F, Salehi J A. Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel[J]. IEEE Transactions on Wireless Communications, 15, 4104-4116(2016).

    [26] Liu W H, Zou D F, Wang P L et al. Wavelength dependent channel characterization for underwater optical wireless communications[C]∥2014 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), August 5-8, 2014, Guilin, China., 895-899(2014).

    [27] Johnson L J, Green R J, Leeson M S. Underwater optical wireless communications: depth-dependent beam refraction[J]. Applied Optics, 53, 7273-7277(2014).

    [28] Li J, Luo J H, Li S B et al. Centroid drift of laser beam propagation through a water surface with wave turbulence[J]. Applied Optics, 59, 6210-6217(2020).

    [29] Zhuang B Y, Li C, Wu N et al. First demonstration of 400 Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer. [C]∥Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California, United States. Washington, DC: OSA, STh3O, 3(2017).

    Jun Li, Jianghua Luo, Xiuhua Yuan. Influence of Water Surface Wave Disturbance on Wireless Optical Communication[J]. Acta Optica Sinica, 2021, 41(7): 0706005
    Download Citation