• Acta Optica Sinica
  • Vol. 38, Issue 5, 0514002 (2018)
Li Yang1, Xuling Shen1、*, Kangwen Yang1, Qiang Hao1, and Heping Zeng1、2
Author Affiliations
  • 1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 1 State Key Laboratory of Precision Spectroscopy Science and Technology, East China Normal University, Shanghai, 200062, China
  • 2 State Key Laboratory of Precision Spectroscopy Science and Technology, East China Normal University, Shanghai, 200062, China
  • show less
    DOI: 10.3788/AOS201838.0514002 Cite this Article Set citation alerts
    Li Yang, Xuling Shen, Kangwen Yang, Qiang Hao, Heping Zeng. Analysis and Realization of Adaptive Dual-Comb Spectroscopy[J]. Acta Optica Sinica, 2018, 38(5): 0514002 Copy Citation Text show less
    References

    [1] Yang H L, Wei H Y, Li Y et al. Technique progress of high-precision gas absorption spectroscopy with femtosecond optical frequency comb[J]. Spectroscopy and Spectral Analysis, 34, 335-339(2014).

    [2] Wu X J, Li Y, Wei H Y et al. Femtosecond optical frequency combs for precision measurement applications[J]. Laser & Optoelectronics Progress, 49, 030001(2012).

    [3] Yi L, Yuan J, Qi X H et al. A diode laser spectrometer at 634 nm and absolute frequency measurements using optical frequency comb[J]. Chinese Physics B, 18, 1409-1412(2009). http://www.cqvip.com/QK/71135X/201107/29813926.html

    [4] Meng F, Cao S Y, Cai Y et al. Study of the femtosecond fiber comb and absolute optical frequency measurement[J]. Acta Physica Sinica, 60, 125-131(2011).

    [5] Wang G C, Wei C H, Yan S H. Wavelength selection and non-ambiguity range analysis for optical-comb-referenced multi-wavelength absolute distance measurement[J]. Acta Optica Sinica, 34, 0412002(2014).

    [6] Wang G C, Yan S H, Yang J et al. Theoretical modeling analysis for precise space ranging based on cross-correlation of femtosecond optical frequency comb[J]. Acta Optica Sinica, 35, 0412002(2015).

    [7] Wang G C, Tan L H, Yan S H et al. Synchronous phase demodulation for real-time absolute distance measurement based on optical comb multi-wavelength interferometry[J]. Acta Optica Sinica, 37, 0112003(2017).

    [8] Xu L M, Song Y J, Liang F et al. All polarization maintaining fiber based dual-comb high precision absolute distance measurement system[J]. Acta Optica Sinica, 35, s212001(2015).

    [9] Wu X J, Wei H Y, Zhang H Y et al. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb[J]. Applied Optics, 52, 2042-2048(2013). http://europepmc.org/abstract/med/23545958

    [10] Stenger J, Tamm C, Haverkamp N et al. Absolute frequency measurement of the 435.5-nm 171Yb +-clock transition with a Kerr-lens mode-locked femtosecond laser [J]. Optics Letters, 26, 1589-1591(2001).

    [11] Udem T, Reichert J, Holzwarth R et al. Accurate measurement of large optical frequency differences with a mode-locked laser[J]. Optics Letters, 24, 881-883(1999). http://www.ncbi.nlm.nih.gov/pubmed/18073883

    [12] Ideguchi T, Poisson A, Guelachvili G et al. Adaptive real-time dual-comb spectroscopy[J]. Nature Communications, 5, 3375(2014). http://www.nature.com/ncomms/2014/140227/ncomms4375/abs/ncomms4375.html

    [13] Scherer J J, Paul J B. O'Keefe A, et al. Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams[J]. Chemical Reviews, 97, 25-51(1997). http://www.ncbi.nlm.nih.gov/pubmed/11848864

    [14] Ideguchi T, Poisson A, Guelachvili G et al. Adaptive dual-comb spectroscopy in the green region[J]. Optics Letters, 37, 4847-4849(2012). http://www.opticsinfobase.org/abstract.cfm?uri=ol-37-23-4847

    [15] Roy J, Deschênes J D, Potvin S et al. Continuous real-time correction and averaging for frequency comb interferometry[J]. Optics Express, 20, 21932-21939(2012). http://www.opticsinfobase.org/abstract.cfm?URI=oe-20-20-21932

    [16] Zhang Z W, Gardiner T, Reid D T. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator[J]. Optics Letters, 38, 3148-3150(2013). http://europepmc.org/abstract/med/24104672

    [17] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [18] Zhu F, Mohamed T, Strohaber J et al. Real-time dual frequency comb spectroscopy in the near infrared[J]. Applied Physics Letters, 102, 121116(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6490495

    [19] Yang H L, Wei H Y, Zhang H Y et al. Performance estimation of dual-comb spectroscopy in different frequency-control schemes[J]. Applied Optics, 55, 6321-6330(2016). http://www.ncbi.nlm.nih.gov/pubmed/27534474

    [20] Keilmann F, Gohle C, Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer[J]. Optics Letters, 29, 1542-1544(2004). http://www.opticsinfobase.org/abstract.cfm?id=80426

    [21] Baumann E, Giorgetta F R, Swann W C et al. Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer[J]. Physical Review A., 84, 14717-14719(2011). http://www.oalib.com/paper/3631146

    [22] Yan M, Li W X, Yang K W et al. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification[J]. Optics Letters, 37, 1511-1513(2012). http://europepmc.org/abstract/med/22555721

    [23] Shen X L, Hao Q, Zeng H P. Self-tuning mode-locked fiber lasers based on prior collection of polarization settings[J]. IEEE Photonics Technology Letters, 29, 1719-1722(2017). http://ieeexplore.ieee.org/document/8022912/

    Li Yang, Xuling Shen, Kangwen Yang, Qiang Hao, Heping Zeng. Analysis and Realization of Adaptive Dual-Comb Spectroscopy[J]. Acta Optica Sinica, 2018, 38(5): 0514002
    Download Citation