• Journal of Innovative Optical Health Sciences
  • Vol. 8, Issue 1, 1530002 (2015)
Zheng Huang1、2、3、*, Yih-Chih Hsu4, Li-Bo Li5, Luo-Wei Wang6, Xiao-Dong Song7, Christine M. N. Yow8, Xia Lei9, Ali I. Musani3, Rong-Cheng Luo5, and Brian J. Day3
Author Affiliations
  • 1MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Normal University Fuzhou, P. R. China
  • 2College of Engineering and Applied Science University of Colorado Denver, CO, USA
  • 3Department of Medicine National Jewish Health, CO, USA
  • 4Department of Bioscience Technology Center for Nanotechnology and Institute of Biomedical Technology Chung Yuan Christian University, Taoyuan, Taiwan
  • 5TCM-Integrated Cancer Center Southern Medical University, Guangzhou, P. R. China
  • 6Department of Gastroenterology & Endoscopy Changhai Hospital, Second Military Medical University Shanghai, P. R. China
  • 7Department of Urologic Surgery, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, P. R. China
  • 8Department of Health Technology Informatics Hong Kong Polytechnic University, Hong Kong SAR, P. R. China
  • 9Department of Dermatology, Daping Hospital Third Military Medical University, Chongqing, P. R. China
  • show less
    DOI: 10.1142/s1793545815300025 Cite this Article
    Zheng Huang, Yih-Chih Hsu, Li-Bo Li, Luo-Wei Wang, Xiao-Dong Song, Christine M. N. Yow, Xia Lei, Ali I. Musani, Rong-Cheng Luo, Brian J. Day. Photodynamic therapy of cancer — Challenges of multidrug resistance[J]. Journal of Innovative Optical Health Sciences, 2015, 8(1): 1530002 Copy Citation Text show less
    References

    [1] P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab, "Photodynamic therapy of cancer: An update," CA Cancer J. Clin. 61(4), 250–281 (2011).

    [2] Z. Huang, "A review of progress in clinical photodynamic therapy," Technol. Cancer Res. Treat. 4(3), 283–293 (2005).

    [3] Z. Huang, L. B. Li, H. W. Wang, X. L. Wang, K. H. Yuan, A. Meyers, L. H. Yang, F. W. Hetzel, "Photodynamic therapy — an update on clinical applications," J. Innov. Opt. Health Sci. 2(1), 73–92 (2009).

    [4] M. R. Austwick, J. H. Woodhams, V. Chalau, C. A. Mosse, C. Eliot, L. Lovat, A. J. Macrobert, I. J. Bigio, S. G. Bown, "Optical measurement of photosensitizer concentration in vivo," J. Innov. Opt. Health Sci. 4(2), 97–111 (2011).

    [5] C. M. N. Yow, R. K. W. Wu, Z. Huang, "Comparison of aminolevulinic acid and its methyl ester mediated photocytotoxicity on human nasopharyngeal carcinoma cells," J. Innov. Opt. Health Sci. 5(2), 1250007 (2012).

    [6] R. R. Allison, C. H. Sibata, "Oncologic photodynamic therapy photosensitizers: A clinical review," Photodiagnosis Photodyn. Ther. 7(2), 61– 75 (2010).

    [7] B. C. Wilson, M. Olivo, G. Singh, "Subcellular localization of photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiationinduced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy," Photochem. Photobiol. 65(1), 166–176 (1997).

    [8] F. Lin, C. J. Bertling, P. G. Geiger, A. W. Girotti, "Delayed hyperresistance of endothelial cells to photodynamic inactivation after contact with hemin," Photochem. Photobiol. 68(2), 211–217 (1998).

    [9] J. P. Gillet, M. M. Gottesman, "Mechanisms of multidrug resistance in cancer," Methods Mol. Biol. 596, 47–76 (2010).

    [10] B. C. Baguley, "Multiple drug resistance mechanisms in cancer," Mol. Biotechnol. 46(3), 308–316 (2010).

    [11] G. Singh, B. C. Wilson, S. M. Sharkey, G. P. Browman, P. Deschamps, "Resistance to photodynamic therapy in radiation induced fibrosarcoma- 1 and Chinese hamster ovary-multi-drug resistant. Cells in vitro," Photochem. Photobiol. 54(2), 307– 312 (1991).

    [12] M. C. Luna, C. J. Gomer, "Isolation and initial characterization of mouse tumor cells resistant to porphyrin-mediated photodynamic therapy," Cancer Res. 51(16), 4243–4249 (1991).

    [13] S. Mayhew, D. I. Vernon, J. Schofield, J. Gri±ths, S. B. Brown, "Investigation of cross-resistance to a range of photosensitizers, hyperthermia and UV light in two radiation-induced fibrosarcoma cell strains resistant to photodynamic therapy in vitro," Photochem. Photobiol. 73(1), 39–46 (2001).

    [14] G. S. Trindade, S. L. Farias, V. M. Rumjanek, M. A. Capella, "Methylene blue reverts multidrug resistance: Sensitivity of multidrug resistant cells to this dye and its photodynamic action," Cancer Lett. 151(2), 161–167 (2000).

    [15] M. Dellinger, G. Moreno, C. Salet, H. Tapiero, T. J. Lampidis, "Cytotoxic and photodynamic effects of Photofrin on sensitive and multi-drug-resistant Friend leukaemia cells," Int. J. Radiat. Biol. 62(6), 735–741 (1992).

    [16] G. Canti, D. Lattuada, S. Morelli, A. Nicolin, R. Cubeddu, P. Taroni, G. Valentini, "E±cacy of photodynamic therapy against doxorubicin-resistant murine tumors," Cancer Lett. 93(2), 255–259 (1995).

    [17] K. Kusuzaki, G. Minami, H. Takeshita, H. Murata, S. Hashiguchi, T. Nozaki, T. Ashihara, Y. Hirasawa, "Photodynamic inactivation with acridine orange on a multidrug-resistant mouse osteosarcoma cell line," Jpn. J. Cancer Res. 91(4), 439–445 (2000).

    [18] M. H. Teiten, L. Bezdetnaya, J. L. Merlin, C. Bour- Dill, M. E. Pauly, M. Dicato, F. Guillemin, "Effect of meta-tetra(hydroxyphenyl)chlorin (mTHPC)- mediated photodynamic therapy on sensitive and multidrug-resistant human breast cancer cells," J. Photochem. Photobiol. B 62(3), 146–152 (2001).

    [19] M. A. Capella, L. S. Capella, "A light in multidrug resistance: Photodynamic treatment of multidrugresistant tumors," J. Biomed. Sci. 10(4), 361–366 (2003).

    [20] L. N. Milla, I. S. Cogno, M. E. Rodríguez, F. Sanz- Rodríguez, A. Zamarrón, Y. Gilaberte, E. Carrasco, V. A. Rivarola, A. Juarranz, "Isolation and characterization of squamous carcinoma cells resistant to photodynamic therapy," J. Cell Biochem. 112(9), 2266–2278 (2011).

    [21] E. A. Coors, P. von den Driesch, "Topical photodynamic therapy for patients with therapy-resistant lesions of cutaneous T-cell lymphoma," J. Am. Acad. Dermatol. 50(3), 363–367 (2004).

    [22] E. S. Chu, C. M. Yow, "Modulation of telomerase and signal transduction proteins by hexyl-ALAphotodynamic therapy (PDT) in human doxorubicin resistant cancer cell models," Photodiagnosis Photodyn. Ther. 9(3), 243–255 (2012).

    [23] P. M. Tang, D. M. Zhang, N. H. Xuan, S. K. Tsui, M. M. Waye, S. K. Kong, W. P. Fong, K. P. Fung, "Photodynamic therapy inhibits P-glycoprotein mediated multidrug resistance via JNK activation in human hepatocellular carcinoma using the photosensitizer pheophorbide a," Mol. Cancer 8, 56 (2009).

    [24] E. A. Lindsay, M. C. Berenbaum, R. Bonnett, D. G. Thomas, "Photodynamic therapy of a mouse glioma: Intracranial tumours are resistant while subcutaneous tumours are sensitive," Br. J. Cancer 63(2), 242–246 (1991).

    [25] C. M. West, J. V. Moore, "Mechanisms behind the resistance of spheroids to photodynamic treatment: A flow cytometry study," Photochem. Photobiol. 55(3), 425–430 (1992).

    [26] A. Casas, G. Di Venosa, T. Hasan, A. Batlle, "Mechanisms of resistance to photodynamic therapy," Curr. Med. Chem. 18(16), 2486–2515 (2011).

    [27] M. C. Luna, A. Ferrario, N. Rucker, C. J. Gomer, "Decreased expression and function of alpha-2 macroglobulin receptor/low density lipoprotein receptor-related protein in photodynamic therapyresistant mouse tumor cells," Cancer Res. 55(9), 1820–1823 (1995).

    [28] S. F. Purkiss, M. F. Grahn, N. S. Williams, "Haematoporphyrin derivative — photodynamic therapy of colorectal carcinoma, sensitized using verapamil and adriamycin," Surg. Oncol. 5(4), 169– 175 (1996).

    [29] Z. L. Chen, H. Y. Ge, Y. Lai, J. M. Tang, Z. T. Shan, "Experimental study on synergistic mechanism of verapamil for photodynamic therapy on colonic adenocarcinoma cells," Proc. SPIE 5254, 476–483 (2003).

    [30] D. L. Frazier, M. A. Barnhill, X. Lu, E. Jones, G. Niemeyer, L. Mishu, C. D. Lothrop Jr. "Effect of multidrug-resistant P-glycoprotein gene expression on chloroaluminum tetrasulfonate phthalocyanine concentration," Lasers Surg. Med. 13(5), 511–516 (1993).

    [31] J. L. Merlin, H. Gautier, M. Barberi-Heyob, M. H. Teiten, F. Guillemin, "The multidrug resistance modulator SDZ-PSC 833 potentiates the photodynamic activity of chlorin e6 independently of Pglycoprotein in multidrug resistant human breast adenocarcinoma cells," Int. J. Oncol. 22(4), 733– 739 (2003).

    [32] W. Li, W. J. Zhang, K. Ohnishi, I. Yamada, R. Ohno, K. Hashimoto, "5-Aminolaevulinic acidmediated photodynamic therapy in multidrug resistant leukemia cells," J. Photochem. Photobiol. B 60(2–3), 79–86 (2001).

    [33] V. P. Savitskiy, V. P. Zorin, M. P. Potapnev, "Accumulation of chlorine e6 derivatives in cells with different level of expression and function activity of multidrug resistance protein P-gp 170," Exp. Oncol. 27(1), 47–51 (2005).

    [34] J. Saczko, J. Kulbacka, A. Chwilkowsa, A. Pola, M. Lugowski, A. Marcinkowska, A. Malarska, T. Banas, "Cytosolic superoxide dismutase activity after photodynamic therapy, intracellular distribution of Photofrin II and hypericin, and P-glycoprotein localization in human colon adenocarcinoma," Folia Histochem. Cytobiol. 45(2), 93–98 (2007).

    [35] S. Horibe, J. Nagai, R. Yumoto, R. Tawa, M. Takano, "Accumulation and photodynamic activity of chlorin e6 in cisplatin-resistant human lung cancer cells," J. Pharm. Sci. 100(7), 3010–3017 (2011).

    [36] D. Kessel, K. Woodburn, "Selective photodynamic inactivation of a multidrug transporter by a cationic photosensitising agent," Br. J. Cancer 71(2), 306– 310 (1995).

    [37] R. W. Robey, K. Steadman, O. Polgar, K. Morisaki, M. Blayney, P. Mistry, S. E. Bates, "Pheophorbide a is a specific probe for ABCG2 function and inhibition," Cancer Res. 64(4), 1242–1246 (2004).

    [38] R. W. Robey, K. Steadman, O. Polgar, S. E. Bates, "ABCG2-mediated transport of photosensitizers: Potential impact on photodynamic therapy," Cancer Biol. Ther. 4(2), 187–194 (2005).

    [39] W. Liu, M. R. Baer, M. J. Bowman, P. Pera, X. Zheng, J. Morgan, R. A. Pandey, A. R. Osero , "The tyrosine kinase inhibitor imatinib mesylate enhances the e±cacy of photodynamic therapy by inhibiting ABCG2," Clin. Cancer Res. 13(8), 2463– 2470 (2007).

    [40] R. Jendzelovsky, J. Mikes, J. Koval', K. Soucek, J. Prochazkova, M. Kello, V. Sackova, J. Hofmanova, A. Kozubík, P. Fedorocko, "Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells," Photochem. Photobiol. Sci. 8(12), 1716–1723 (2009).

    [41] T. Ogino, H. Kobuchi, K. Munetomo, H. Fujita, M. Yamamoto, T. Utsumi, K. Inoue, T. Shuin, J. Sasaki, M. Inoue, K. Utsumi, "Serum-dependent export of protoporphyrin IX by ATP-binding cassette transporter G2 in T24 cells," Mol. Cell Biochem. 358(1–2), 297–307 (2011).

    [42] A. Bebes, T. Nagy, Z. Bata-Cs€orgo, L. Kemeny, A. Dobozy, M. Szell, "Specific inhibition of the ABCG2 transporter could improve the e±cacy of photodynamic therapy," J. Photochem. Photobiol. B 105(2), 162–166 (2011).

    [43] G. A. Barron, H. Moseley, J. A. Woods, "Differential sensitivity in cell lines to photodynamic therapy in combination with ABCG2 inhibition," J. Photochem. Photobiol. B. 126, 87–96 (2013).

    [44] Y. Hagiya, Y. Endo, Y. Yonemura, K. Takahashi, M. Ishizuka, E. Abe, T. Tanaka, I. Okura, M. Nakajima, T. Ishikawa, S. Ogura, "Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro," Photodiagnosis Photodyn. Ther. 9(3), 204–214 (2012).

    [45] A. Tamura, M. Watanabe, H. Saito, H. Nakagawa, T. Kamachi, I. Okura, T. Ishikawa, "Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: Identification of alleles that are defective in porphyrin transport," Mol. Pharmacol. 70(1), 287–296 (2006).

    [46] A. Tamura, Y. Onishi, R. An, S. Koshiba, K. Wakabayashi, K. Hoshijima, W. Priebe, T. Yoshida, S. Kometani, T. Matsubara, K. Mikuriya, T. Ishikawa, "In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs," Drug Metab. Pharmacokinet. 22(6), 428–440 (2007).

    [47] Z. Y. Xu, K. Wang, X. Q. Li, S. Chen, J. M. Deng, Y. Cheng, Z. G. Wang, "The ABCG2 transporter is a key molecular determinant of the e±cacy of sonodynamic therapy with Photofrin in glioma stem-like cells," Ultrasonics 53(1), 232–238 (2013).

    [48] S. Y. Lee, S. K. Luk, C. P. Chuang, S. P. Yip, S. S. To, Y. M. Yung, "TP53 regulates human AlkB homologue 2 expression in glioma resistance to Photofrin-mediated photodynamic therapy," Br. J. Cancer 103(3), 362–369 (2010).

    [49] J. Usuda, Y. Tsunoda, S. Ichinose, T. Ishizumi, K. Ohtani, S. Maehara, S. Ono, H. Tsutsui, T. Ohira, T. Okunaka, K. Furukawa, Y. Sugimoto, H. Kato, N. Ikeda, "Breast cancer resistant protein (BCRP) is a molecular determinant of the outcome of photodynamic therapy (PDT) for centrally located early lung cancer," Lung Cancer 67(2), 198–204 (2010).

    [50] J. Morgan, J. D. Jackson, X. Zheng, S. K. Pandey, R. K. Pandey, "Substrate a±nity of photosensitizers derived from chlorophyll-a: The ABCG2 transporter affects the phototoxic response of side population stem cell-like cancer cells to photodynamic therapy," Mol. Pharm. 7(5), 1789–1804 (2010).

    [51] E. C. Tracy, M. J. Bowman, R. K. Pandey, B. W. Henderson, H. Baumann, "Cell-type selective phototoxicity achieved with chlorophyll-a derived photosensitizers in a co-culture system of primary human tumor and normal lung cells," Photochem. Photobiol. 87(6), 1405–1418 (2011).

    [52] T. Sakugawa, M. Miura, N. Hokama, T. Suzuki, T. Tateishi, T. Uno, "Enantioselective disposition of fexofenadine with the P-glycoprotein inhibitor verapamil," Br. J. Clin. Pharmacol. 67(5), 535–540 (2009).

    [53] S. Hffrtter, R. Sennewald, G. Nehmiz, P. Reilly, "Oral bioavailability of dabigatran etexilate (Pradaxar) after co-medication with verapamil in healthy subjects," Br. J. Clin. Pharmacol. 75(4), 1053–1062 (2013).

    [54] M. Korbelik, W. Zhang, D. Separovic, "Ampli- fication of cancer cell apoptosis in photodynamic therapy-treated tumors by adjuvant ceramide analog LCL29," Lasers Surg. Med. 43(7), 614–620 (2011).

    [55] Y. Y. Zhang, K. M. Xie, G. Q. Yang, H. J. Mu, Y. Yin, B. Zhang, P. Xie, "The effect of glucosylceramide synthase on P-glycoprotein function in K562/ AO2 leukemia drug-resistance cell line," Int. J. Hematol. 93(3), 361–367 (2011).

    [56] C. C. Wagner, M. Bauer, R. Karch, T. Feurstein, S. Kopp, P. Chiba, K. Kletter, W. L€oscher, M. Müller, M. Zeitlinger, O. Langer, "A pilot study to assess the e±cacy of tariquidar to inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil and PET," J. Nucl. Med. 50(12), 1954–1961 (2009).

    [57] W. Sun, Y. Kajimoto, H. Inoue, S. Miyatake, T. Ishikawa, T. Kuroiwa, "Gefitinib enhances the e±cacy of photodynamic therapy using 5-aminolevulinic acid in malignant brain tumor cells," Photodiagnosis Photodyn. Ther. 10(1), 42–50 (2013).

    [58] H. Burger, H. van Tol, M. Brok, E. A. Wiemer, E. A. de Bruijn, G. Guetens, G. de Boeck, A. Sparreboom, J. Verweij, K. Nooter, "Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps," Cancer Boil. Ther. 4, 747–752 (2005).

    [59] E. R. Gardner, A. Sparreboom, J. Verweij, W. D. Figg, "Lack of ABC transporter autoinduction in mice following long-term exposure to imatinib," Cancer Biol. Ther. 7(3), 412–415 (2008).

    [60] B. Chen, B. W. Pogue, P. J. Hoopes, T. Hasan, "Vascular and cellular targeting for photodynamic therapy," Crit. Rev. Eukaryot. Gene Expr. 16, 279– 305 (2006).

    [61] Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, Y. K. Chen, "Photodynamic therapy for treatment of solid tumors–potential and technical challenges," Technol. Cancer Res. Treat. 7(4), 309–320 (2008).

    [62] K. H. Yuan, J. H. Gao, Z. Huang, "Adverse effects associated with photodynamic therapy (PDT) of port-wine stain (PWS) birthmarks," Photodiagnosis Photodyn. Ther. 9(4), 332–336 (2012).

    [63] D. Preise, O. Mazor, N. Koudinova, M. Liscovitch, A. Scherz, Y. Salomon, "Bypass of tumor drug resistance by antivascular therapy," Neoplasia 5(6), 475–480 (2003).

    [64] N. L. Novichenko, A. A. Mamchur, I. O. Lisniak, M. F. Gamaliya, "Study of photodynamic e±ciency of the hematoporphyrin conjugated with antibody to VEGF in mouse Lewis carcinoma," Exp. Oncol. 30(4), 315–318 (2008).

    [65] N. Madar-Balakirski, C. Tempel-Brami, V. Kalchenko, O. Brenner, D. Varon, A. Scherz, Y. Salomon, "Permanent occlusion of feeding arteries and draining veins in solid mouse tumors by vascular targeted photodynamic therapy (VTP) with Tookad," PLoS One 5(4), e10282 (2010).

    [66] Z. Huang, Q. Chen, D. Luck, J. Beckers, B. C. Wilson, N. Trncic, S. M. Larue, D. Blanc, F. W. Hetzel, "Studies of a vascular-acting photosensitizer, Pd-bacteriopheophorbide (Tookad), in normal canine prostate and spontaneous canine prostate cancer," Lasers Surg. Med. 36(5), 390–397 (2005).

    [67] J. Trachtenberg, A. Bogaards, R. A. Weersink, M. A. Haider, A. Evans, S. A. McCluskey, A. Scherz, M. R. Gertner, C. Yue, S. Appu, A. Aprikian, J. Savard, B. C. Wilson, M. Elhilali, "Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: Assessment of safety and treatment response," J. Urol. 178(5), 1974–1979 (2007).

    [68] A. R. Azzouzi, E. Barret, C. M. Moore, A. Villers, C. Allen, A. Scherz, G. Muir, M. de Wildt, N. J. Barber, S. Lebdai, M. Emberton, "TOOKAD(r) Soluble vascular-targeted photodynamic (VTP) therapy: Determination of optimal treatment conditions and assessment of effects in patients with localised prostate cancer," BJU Int. 112(6), 766–774 (2013).

    [69] H. Benachour, A. Sève, T. Bastogne, C. Frochot, R. Vanderesse, J. Jasniewski, I. Miladi, C. Billotey, O. Tillement, F. Lux, M. Barberi-Heyob, "Multifunctional peptide-conjugated hybrid silica nanoparticles for photodynamic therapy and MRI," Theranostics 2(9), 889–904 (2012).

    [70] K. Berg, P. K. Selbo, L. Prasmickaite, T. E. Tjelle, K. Sandvig, J. Moan, G. Gaudernack, O. Fodstad, S. Kj lsrud, H. Anholt, G. H. Rodal, S. K. Rodal, A. H gset, "Photochemical internalization: A novel technology for delivery of macromolecules into cytosol," Cancer Res. 59(6), 1180–1183 (1999).

    [71] P. K. Selbo, A. Weyergang, A. Bonsted, S. G. Bown, K. Berg, "Photochemical internalization of therapeutic macromolecular agents: A novel strategy to kill multidrug-resistant cancer cells," J. Pharmacol. Exp. Ther. 319(2), 604–612 (2006).

    [72] P. K. Selbo, A. Weyergang, M. S. Eng, M. Bostad, G. M. M landsmo, A. H gset, K. Berg, "Strongly amphiphilic photosensitizers are not substrates of the cancer stem cell marker ABCG2 and provides specific and e±cient light-triggered drug delivery of an EGFR-targeted cytotoxic drug," J. Control. Release 159(2), 197–203 (2012).

    [73] H. L. Lu, W. J. Syu, N. Nishiyama, K. Kataoka, P. S. Lai, "Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the e±cacy of photodynamic therapy and overcomes drug-resistance in vivo," J. Control. Release 155(3), 458–464 (2011).

    [74] A. S. Thakor, S. S. Gambhir, "Nanooncology: The future of cancer diagnosis and therapy," CA Cancer J. Clin. 63(6), 395–418 (2013).

    [75] P. Huang, C. Xu, J. Lin, C. Wang, X. Wang, C. Zhang, X. Zhou, S. Guo, D. Cui, "Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy," Theranostics 1, 240–250 (2011).

    [76] M. Vikdal, A. Weyergang, P. K. Selbo, K. Berg, "Vascular endothelial cells as targets for photochemical internalization (PCI)," Photochem. Photobiol. 89(5), 1185–1192 (2013).

    [77] D. Moseng, G. Volden, K. Midelfart, G. Kavli, T. Christensen, J. Moan, "Treatment of mouse carcinomas with intratumoral injections of hematoporphyrin derivative and red light," Photodermatol. 2(2), 107–110 (1985).

    [78] H. Kostron, M. R. Swartz, R. L. Martuza, "Photodynamic therapy is potentiated by Co60 and intratumoral injection of hematoporphyrin derivative," J. Neurooncol. 6(2), 185–191 (1988).

    [79] S. L. Gibson, K. R. van der Meid, R. S. Murant, R. Hilf, "Increased e±cacy of photodynamic therapy of R3230AC mammary adenocarcinoma by intratumoral injection of Photofrin II," Br. J. Cancer 61(4), 553–557 (1990).

    [80] M. A. D'Hallewin, D. Kochetkov, Y. Viry-Babel, A. Leroux,E.Werkmeister,D.Dumas, S.Gr fe,V. Zorin, F. Guillemin, L. Bezdetnaya, "Photodynamic therapy with intratumoral administration of lipid-based mTHPC in a model of breast cancer recurrence," Lasers Surg. Med. 40(8), 543–549 (2008).

    [81] R. Kalluri, M. Zeisberg, "Fibroblasts in cancer," Nat. Rev. Cancer 6(5), 392–401 (2006).

    [82] P. C. Lo, J. Chen, K. Ste lova, M. S. Warren, R. Navab, B. Bandarchi, S. Mullins, M. Tsao, J. D. Cheng, G. Zheng, "Photodynamic molecular beacon triggered by fibroblast activation protein on cancerassociated fibroblasts for diagnosis and treatment of epithelial cancers," J. Med. Chem. 52(2), 358–368 (2009).

    [83] N. R. Patel, B. S. Pattni, A. H. Abouzeid, V. P. Torchilin, "Nanopreparations to overcome multidrug resistance in cancer," Adv. Drug. Deliv. Rev. 65(13–14), 1748–1762 (2013).

    [84] R. R. Allison, H. C. Mota, V. S. Bagnato, C. H. Sibata, "Bio-nanotechnology and photodynamic therapy — State of the art review," Photodiagnosis Photodyn. Ther. 5(1), 19–28 (2008).

    [85] W. T. Li, "Nanoparticles for photodynamic therapy," Handbook of Biophotonics, Vol. 2, pp. 321–336, Wiley Online Library (2013).

    [86] E. Paszko, C. Ehrhardt, M. O. Senge, D. P. Kelleher, J. V. Reynolds, "Nanodrug applications in photodynamic therapy," Photodiagnosis Photodyn. Ther. 8(1), 14–29 (2011).

    [87] A. Khdair, D. Chen, Y. Patil, L. Ma, Q. P. Dou, M. P. Shekhar, J. Panyam, "Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance," J. Control. Release 141(2), 137–144 (2010).

    [88] R. K. Pandey, L. N. Goswami, Y. Chen, A. Gryshuk, J. R. Missert, A. Osero , T. J. Dougherty, "Nature: A rich source for developing multifunctional agents. Tumor-imaging and photodynamic therapy," Lasers Surg. Med. 38(5), 445–467 (2006).

    [89] T. J. Curiel, "Immunotherapy: A useful strategy to help combat multidrug resistance," Drug Resist. Updat. 15(1–2), 106–113 (2012).

    [90] A. P. Castano, P. Mroz, M. R. Hamblin, "Photodynamic therapy and anti-tumour immunity," Nat. Rev. Cancer 6(7), 535–545 (2006).

    [91] S. O. Gollnick, "Photodynamic therapy and antitumor immunity," J. Natl. Compr. Canc. Netw. 10(Suppl. 2), S40–S43 (2012).

    [92] B. M. Barth, S. S. Shanmugavelandy, J. M. Kaiser, C. McGovern, E. . Alt no lu, J. K. Haakenson, J. A. Hengst, E. L. Gilius, S. A. Knupp, T. E. Fox, J. P. Smith, T. M. Ritty, J. H. Adair, M. Kester, "PhotoImmunoNanoTherapy reveals an anticancer role for sphingosine kinase 2 and dihydrosphingosine- 1-phosphate," ACS Nano 7(3), 2132– 2144 (2013).

    [93] E. Reginato, P. Mroz, H. Chung, M. Kawakubo, P. Wolf, M. R. Hamblin, "Photodynamic therapy plus regulatory T-cell depletion produces immunity against a mouse tumour that expresses a self-antigen," Br. J. Cancer 109(8), 2167–2174 (2013).

    Zheng Huang, Yih-Chih Hsu, Li-Bo Li, Luo-Wei Wang, Xiao-Dong Song, Christine M. N. Yow, Xia Lei, Ali I. Musani, Rong-Cheng Luo, Brian J. Day. Photodynamic therapy of cancer — Challenges of multidrug resistance[J]. Journal of Innovative Optical Health Sciences, 2015, 8(1): 1530002
    Download Citation