• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 1, 127 (2023)
Miao WANG1、2、3、*, Zheng CHEN1、2、3, Yao HUANG1、2, Hua GUAN1、2, and Kelin GAO1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.01.015 Cite this Article
    WANG Miao, CHEN Zheng, HUANG Yao, GUAN Hua, GAO Kelin. Measurement and optimization of stray electric field shifts of linear ion trap[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 127 Copy Citation Text show less
    References

    [1] Paul W. Electromagnetic traps for charged and neutral particles [J]. Reviews of Modern Physics, 1990, 62(3): 531-540.

    [2] Dubé P, Madej A A, Zhou Z C, et al. Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10-17 level [J]. Physical Review A, 2013, 87(2): 023806.

    [3] Huang Y, Guan H, Liu P, et al. Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10-17 level [J]. Physical Review Letters, 2016, 11(1): 013001.

    [4] Huntemann N, Sanner C, Lipphardt B, et al. Single-ion atomic clock with 3×10-18 systematic uncertainty [J]. Physical Review Letters, 2016, 11(6): 063001.

    [5] Bohnet J G, Sawyer B C, Britton J W, et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions [J]. Science, 2016, 352(6291): 1297-1301.

    [6] Ge W C, Sawyer B C, Britton J W, et al. Trapped ion quantum information processing with squeezed phonons [J]. Physical Review Letters, 2019, 122(3): 030501.

    [7] Hempel C, Maier C, Romero J, et al. Quantum chemistry calculations on a trapped-ion quantum simulator [J]. Physical Review X, 2018, 8(3): 031022.

    [8] Bautista-Salvador A, Zarantonello G, Hahn H, et al. Multilayer ion trap technology for scalable quantum computing and quantum simulation [J]. New Journal of Physics, 2019, 21(4): 043011.

    [9] Huang Y, Lu Z H, Guan H, et al. Principle and progress of the ion optical frequency standards [J]. Physics, 2016, 45(7): 423-430.

    [10] Huang Y, Guan H, Zeng M, et al. 40Ca+ ion optical clock with micromotion-induced shifts below 1×10-18 [J]. Physical Review A, 2019, 99(1): 011401.

    [11] Berkeland D J, Miller J D, Bergquist J C, et al. Minimization of ion micromotion in a Paul trap [J]. Journal of Applied Physics, 1998, 83(10): 5025-5033.

    [12] Schneider C, Enderlein M, Huber T, et al. Optical trapping of an ion [J]. Nature Photonics, 2010, 4(11): 772-775.

    [13] Vedel F, Vedel M. Nonlinear effects in the detection of stored ions [J]. Physical Review A, 1990, 41(5): 2348-2351.

    [14] Shao H, Wang M, Zeng M, et al. Laser ablation and two-step photo-ionization for the generation of 40Ca+ [J]. Journal of Physics Communications, 2018, 2(9): 095019.

    [15] Zimmermann K, Okhapkin M V, Herrera-Sancho O A, et al. Laser ablation loading of a radio frequency ion trap [J]. Applied Physics B, 2012, 107(4): 883-889.

    [16] Kim H, Gilmore C M, Piqué A, et al. Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices [J]. Journal of Applied Physics, 1999, 8(11): 6451-6461.

    [17] Tuna O, Selamet Y, Aygun G, et al. High quality ITO thin films grown by dc and RF sputtering without oxygen [J]. Journal of Physics D: Applied Physics, 2010, 43(5): 055402.

    [18] Kudryashov D, Gudovskikh A, Zelentsov K. Low temperature growth of ITO transparent conductive oxide layers in oxygen-free environment by RF magnetron sputtering [J]. Journal of Physics: Conference Series, 2013, 461: 012021.

    WANG Miao, CHEN Zheng, HUANG Yao, GUAN Hua, GAO Kelin. Measurement and optimization of stray electric field shifts of linear ion trap[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 127
    Download Citation