• Infrared and Laser Engineering
  • Vol. 45, Issue 1, 118005 (2016)
Shi Huicai*, Zhang Rongzhu, and Sun Nianchun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201645.0118005 Cite this Article
    Shi Huicai, Zhang Rongzhu, Sun Nianchun. Effects of center wavelength and pulse width on superposed energy beams in far field[J]. Infrared and Laser Engineering, 2016, 45(1): 118005 Copy Citation Text show less

    Abstract

    Laser beam far-field superposition is an effective method for improving the far-field target surface energy. Changes of the parameters for unit beam will influence the far-field combined beam. In order to analyze the impact of pulsed laser parameter′s control on the far-field energy distribution, the Fraunhofer diffraction integral formula was used and the analytic formula of far field intensity for four beams of ordinary pulsed Gauss beam synthesis was deduced and the specific relationship about laser center wavelength and pulse width change with the far-field stack power were proposed. Through the numerical simulation of MATLAB, the results show, when the center wavelength of beam decreases or pulse width decreases, the far field energy converges to the center axis and the far-field on axis intensity will increase. When the on axis intensity relative to the ideal center wavelength and pulse width in the far field intensity on axis changes rate is less than 5%, the center wavelength maximum rate of change should not exceed 7.89%, or pulse width maximum rate of change should not exceed 91%. Therefore, the center wavelength will have a greater impact on far-field intensity distribution compared with pulse width.
    Shi Huicai, Zhang Rongzhu, Sun Nianchun. Effects of center wavelength and pulse width on superposed energy beams in far field[J]. Infrared and Laser Engineering, 2016, 45(1): 118005
    Download Citation