• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 11, 4081 (2022)
MENG Baojian*, ZHU Yongchang, YANG Debo, CUI Zhu, JIAO Yunjie, LIU Hao, and DAI Changyou
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    MENG Baojian, ZHU Yongchang, YANG Debo, CUI Zhu, JIAO Yunjie, LIU Hao, DAI Changyou. Effect of Alkaline Earth Metal Oxide Content on Crystallization Behavior of Simulated High Level Liquid Waste Glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4081 Copy Citation Text show less
    References

    [1] BAISDEN P A, CHOPPIN G R. Nuclear waste management and the nuclear fuel cycle[J]. Radiochemistry and Nuclear Chemistry, 2007: 163.

    [2] VIENNA J D. Nuclear waste vitrification in the United States: recent developments and future options[J]. International Journal of Applied Glass Science, 2010, 1(3): 309321.

    [3] LIN K H. An overview of radioactive waste management technology development current status and trends[J]. Journal of Environmental Science and Health Part A: Environmental Science and Engineering and Toxicology, 1991, 26(3): 373393.

    [4] PEGG I L. Turning nuclear waste into glass[J]. Physics Today, 2015, 68(2): 3339.

    [5] PLODINEC M. Borosilicate glasses for nuclear waste immobilisation[J]. Glass Technology, 2000, 41: 186192.

    [6] DONALD I W, METCALFE B, TAYLOR R. The immobilization of high level radioactive wastes using ceramics and glasses[J]. Journal of Materials Science, 1997, 32: 58515887.

    [8] VOGEL W. Phase separation in glass[J]. Journal of NonCrystalline Solids, 1977, 25(1/2/3): 170214.

    [11] LUCKSCHEITER B, NESOVIC M. Development of glasses for the vitrification of high level liquid waste (HLLW) in a joule heated ceramic melter[J]. Waste Management, 1996, 16(7): 571578.

    [12] KIM D S, HRMA P, SMITH D E, et al. Crystallization in simulated glasses from Hanford highlevel nuclear waste composition range[R]. Pacific Northwest Laboratory. 1993.

    [13] CAHN J W. Phase separation by spinodal decomposition in isotropic systems[J]. The Journal of Chemical Physics, 1965, 42(1): 9399.

    [14] SUZUKI M, TANAKA T. Materials design for the fabrication of porous glass using phase separation in multicomponent borosilicate glass[J]. ISIJ International, 2008, 48(11): 15241532.

    [15] PARKINSON B G, HOLLAND D, SMITH M E, et al. Quantitative measurement of Q3 species in silicate and borosilicate glasses using Raman spectroscopy[J]. Journal of NonCrystalline Solids, 2008, 354(17): 19361942.

    [16] SAIKI K, SAKIDA S, BENINO Y, et al. Phase separation of borosilicate glass containing sulfur[J]. Journal of the Ceramic Society of Japan, 2010, 118(1379): 603607.

    [17] LU X N, SUN R F, HUANG L P, et al. Effect of vanadium oxide addition on thermomechanical behaviors of borosilicate glasses: toward development of high crack resistant glasses for nuclear waste disposal[J]. Journal of NonCrystalline Solids, 2019, 515: 8897.

    [18] MCKEOWN D A, MULLER I S, MATLACK K S, et al. Xray absorption studies of vanadium valence and local environment in borosilicate waste glasses using vanadium sulfide, silicate, and oxide standards[J]. Journal of NonCrystalline Solids, 2002, 298(2/3): 160175.

    [19] TRIBAUDINO M, MANTOVANI L, BERSANI D, et al. Raman spectroscopy of (Ca,Mg)MgSi2O6 clinopyroxenes[J]. American Mineralogist, 2012, 97(8/9): 13391347.

    MENG Baojian, ZHU Yongchang, YANG Debo, CUI Zhu, JIAO Yunjie, LIU Hao, DAI Changyou. Effect of Alkaline Earth Metal Oxide Content on Crystallization Behavior of Simulated High Level Liquid Waste Glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4081
    Download Citation