• Acta Optica Sinica
  • Vol. 40, Issue 4, 401001 (2020)
Hong Guanglie1、*, Li Hu1、2, Wang Yinan3, Li Jiatang1、2, and Chen Shaojie1、2
Author Affiliations
  • 1Key Laboratory of Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Key Laboratory of Middle Atmosphere and Global Environment Observation, Beijing 100029, China
  • show less
    DOI: 10.3788/AOS202040.0401001 Cite this Article Set citation alerts
    Hong Guanglie, Li Hu, Wang Yinan, Li Jiatang, Chen Shaojie. Number Simulation for Laser Occultation Measurement of Atmospheric Vapor Mixing Ratio[J]. Acta Optica Sinica, 2020, 40(4): 401001 Copy Citation Text show less
    Geometry of laser occultation limb sounding
    Fig. 1. Geometry of laser occultation limb sounding
    Absorption and transmittance spectra. (a)Absorption spectrum of water vapor in the NIR region near 935 nm(Selected detection wavelength is not sensitive to temperature); (b) atmospheric transmittance spectrum from a 13 km altitude showing the oxygen A-band absorption line at 764.7 nm using a standard US atmosphere(Selected detection wavelength is not sensitive to temperature)
    Fig. 2. Absorption and transmittance spectra. (a)Absorption spectrum of water vapor in the NIR region near 935 nm(Selected detection wavelength is not sensitive to temperature); (b) atmospheric transmittance spectrum from a 13 km altitude showing the oxygen A-band absorption line at 764.7 nm using a standard US atmosphere(Selected detection wavelength is not sensitive to temperature)
    Flow chart for retrieval atmospheric temperature and pressure from 0.765 μm laser occultation
    Fig. 3. Flow chart for retrieval atmospheric temperature and pressure from 0.765 μm laser occultation
    Flow chart for water vapor retrieval concentration from 935nm laser occultation
    Fig. 4. Flow chart for water vapor retrieval concentration from 935nm laser occultation
    Simulated laser occultation crosslink water vapor retrieval error
    Fig. 5. Simulated laser occultation crosslink water vapor retrieval error
    Simulated laser occultation crosslink temperature retrieval error
    Fig. 6. Simulated laser occultation crosslink temperature retrieval error
    Water vapor profiles: model and retrieved results
    Fig. 7. Water vapor profiles: model and retrieved results
    Temperature profiles: model and retrieved results
    Fig. 8. Temperature profiles: model and retrieved results
    ParameterValueIntroduction
    Emission wavelength0.765 μm(764.688 nm/764.918 nm), 0.935 μm(935.607 nm/935.390 nm)Double wavelength pairs of online and offline
    Emission spectrumLinewidth Δf/f0<3×10-8; spectral purity>36 dB
    Laser pulse power1.5 WDFB semiconductor laser+semiconductor optical amplifier
    Laser pulse time width1.5 msAcoustic-optic chopper
    Laser pulse repetition rate50 Hz
    Laser divergence angle~3.0 mrad
    Reception telescopeΦ36 cmCassegrain
    Field of view~1.0 mrad
    Detector noise equivalent power8×10-13 W per 2 ms2 ms observation time for a pulse
    Detector dynamic rangeNEP~2×10-9 per 2 ms
    Orbital altitude400 kmLow-earth-orbit
    Note:DFB represents distributed feedback; NEP represents noise equivalent power.
    Table 1. Parameters of the laser occultation model
    Hong Guanglie, Li Hu, Wang Yinan, Li Jiatang, Chen Shaojie. Number Simulation for Laser Occultation Measurement of Atmospheric Vapor Mixing Ratio[J]. Acta Optica Sinica, 2020, 40(4): 401001
    Download Citation