• Journal of Semiconductors
  • Vol. 46, Issue 2, 021403 (2025)
Boyu Ye1, Xiao Liu1,5,*, Chao Wu4, Wensheng Yan1, and Xiaodong Pi2,3,**
Author Affiliations
  • 1Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
  • 2State key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 3Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
  • 4Sorbonne Université, Faculté des Sciences, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4 Place Jussieu, 75005 Paris, France
  • 5State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
  • show less
    DOI: 10.1088/1674-4926/24100020 Cite this Article
    Boyu Ye, Xiao Liu, Chao Wu, Wensheng Yan, Xiaodong Pi. Synaptic devices based on silicon carbide for neuromorphic computing[J]. Journal of Semiconductors, 2025, 46(2): 021403 Copy Citation Text show less
    References

    [1] F C Zhou, Y Chai. Near-sensor and in-sensor computing. Nat Electron, 3, 664(2020).

    [2] Y Li, G Z Shen. Advances in optoelectronic artificial synapses. Cell Rep Phys Sci, 3, 101037(2022).

    [3] P Y Huang, B Y Jiang, H J Chen et al. Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction. Nat Commun, 14, 6736(2023).

    [4] G Li, D G Xie, H Zhong et al. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat Commun, 13, 1729(2022).

    [5] T Guo, S S Li, Zhou Norman et al. Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition. Nat Commun, 15, 6731(2024).

    [6] N Z Sui, Y X Ji, M Li et al. Photoprogrammed multifunctional optoelectronic synaptic transistor arrays based on photosensitive polymer-sorted semiconducting single-walled carbon nanotubes for image recognition. Adv Sci, 11, e2401794(2024).

    [7] X Y Jiang, M R Ye, Y H Li et al. Multiframe-integrated, in-sensor computing using persistent photoconductivity. J Semicond, 45, 092401(2024).

    [8] X Liu, S J Huang, K Wang et al. An array of light-stimulated two-terminal synaptic devices with the modulation of electric polarity. Adv Funct Mater, 33, 2211394(2023).

    [9] J R Song, J L Meng, T Y Wang et al. InGaZnO-based photoelectric synaptic devices for neuromorphic computing. J Semicond, 45, 092402(2024).

    [10] B J Choi, A C Torrezan, K J Norris et al. Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. Nano Lett, 13, 3213(2013).

    [11] S R Zhu, T Xie, Z Y Lv et al. Hierarchies in visual pathway: functions and inspired artificial vision. Adv Mater, 36, 2301986(2024).

    [12] Y Wang, L Yin, W Huang et al. Optoelectronic synaptic devices for neuromorphic computing. Adv Intell Syst, 3, 2000099(2021).

    [13] L Yin, C Han, Q T Zhang et al. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy, 63, 103859(2019).

    [14] M X Bu, Y Wang, L Yin et al. Synaptic devices based on semiconductor nanocrystals. Front of Inf Technol Electron Eng, 23, 1579(2022).

    [15] G Li, D Xie, Z Zhang et al. Flexible VO2 films for in-Sensor computing with ultraviolet light. Adv Funct Mater, 32, 2203074(2022).

    [16] H H Wei, Y Ni, L Sun et al. Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior. Nano Energy, 81, 105648(2021).

    [17] S L Dai, X H Wu, D P Liu et al. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl Mater Interfaces, 10, 21472(2018).

    [18] C D Yang, J Qian, S Jiang et al. An optically modulated organic Schottky-barrier planar-diode-based artificial synapse. Adv Opt Mater, 8, 2000153(2020).

    [19] Y Wang, Z Y Lv, J R Chen et al. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv Mater, 30, e1802883(2018).

    [20] S J Chen, J Huang. Recent advances in synaptic devices based on halide perovskite. ACS Appl Electron Mater, 2, 1815(2020).

    [21] T Ahmed, S Kuriakose, E L H Mayes et al. Optically stimulated artificial synapse based on layered black phosphorus. Small, 15, e1900966(2019).

    [22] A S Almuslem, S F Shaikh, M M Hussain. Flexible and stretchable electronics for harsh-environmental applications. Adv Mater Technol, 4, 1900145(2019).

    [23] T Guo, J W Ge, Y X Jiao et al. Intelligent matter endows reconfigurable temperature and humidity sensations for in-sensor computing. Mater Horiz, 10, 1030(2023).

    [24] M J Li, M Li, J S An et al. Three-dimensional integrated synaptic devices based on a silver-cluster conduction mechanism with high thermostability. ACS Appl Mater Interfaces, 16, 42380(2024).

    [25] X Liu, D K Li, Y Wang et al. Flexible optoelectronic synaptic transistors for neuromorphic visual systems. APL Machine Learning, 1, 031501(2023).

    [26] X Liu, L Chu, W S Yan et al. High-temperature-resistant synaptic transistors for neuromorphic computing. Cell Rep Phys Sci, 5, 102079(2024).

    [27] T Kimoto, J A Cooper. Fundamentals of silicon carbide technology: fundamentals of silicon carbide technology(2014).

    [28] Y Zhu, Y L He, C S Chen et al. IGZO-based neuromorphic transistors with temperature-dependent synaptic plasticity and spiking logics. Sci China Inf Sci, 65, 162401(2022).

    [29] J S Cui, F F An, J C Qian et al. CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators. Nat Electron, 6, 292(2023).

    [30] C Oh, M Jo, J Son. All-solid-state synaptic transistors with high-temperature stability using proton pump gating of strongly correlated materials. ACS Appl Mater Interfaces, 11, 15733(2019).

    [31] J Shi, SD Ha, Y Zhou et al. A correlated nickelate synaptic transistor. Nat Commun, 4, 2676(2013).

    [32] X D Huang, Y Li, H Y Li et al. Forming-free, fast, uniform, and high endurance resistive switching from cryogenic to high temperatures in W/AlOx/Al2O3/Pt bilayer memristor. IEEE Electron Device Lett, 41, 549(2020).

    [33] A Melianas, TJ Quill, G LeCroy et al. Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci Adv, 6, eabb2958(2020).

    [34] Y Ren, J Q Yang, L Zhou et al. Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Adv Funct Mater, 28, 1805599(2018).

    [35] Y F Zhao, S Haseena, MK Ravva et al. Side chain engineering enhances the high-temperature resilience and ambient stability of organic synaptic transistors for neuromorphic applications. Nano Energy, 104, 107985(2022).

    [36] G X Chen, X P Yu, C S Gao et al. Temperature-controlled multisensory neuromorphic devices for artificial visual dynamic capture enhancement. Nano Res, 16, 7661(2023).

    [37] Z Y Guo, J Y Zhang, B Yang et al. Organic high-temperature synaptic phototransistors for energy-efficient neuromorphic computing. Adv Mater, 36, e2310155(2024).

    [38] J Zhou, W Li, Y Chen et al. A Monochloro copper phthalocyanine memristor with high-temperature resilience for electronic synapse Applications. Adv Mater, 33, e2006201(2021).

    [39] X F Cheng, W H Qian, J Wang et al. Environmentally robust memristor enabled by lead-free double perovskite for high-performance information storage. Small, 15, e1905731(2019).

    [40] Z H Liu, H Tang, P P Cheng et al. High-performance and environmentally robust multilevel lead-free organotin halide perovskite memristors. Adv Electron Mater, 9, 2201005(2023).

    [41] Y C Ma, Y Yan, L Q Luo et al. High-performance van der waals antiferroelectric CuCrP2S6-based memristors. Nat Commun, 14, 7891(2023).

    [42] L Yin, R Q Cheng, Y Wen et al. High-performance memristors based on ultrathin 2D copper chalcogenides. Adv Mater, 34, 2108313(2022).

    [43] W K Shen, P Wang, G D Wei et al. SiC@NiO core–shell nanowire networks-based optoelectronic synapses for neuromorphic computing and visual systems at high temperature. Small, 20, e2400458(2024).

    [44] M X Bu, Y Wang, Z Y Ni et al. High-temperature optoelectronic synaptic devices based on 4H-SiC. Sci China Infor Sci, 1(2024).

    [45] C H Kai, Y Wang, X P Liu et al. AlGaN/GaN-based optoelectronic synaptic devices for neuromorphic computing. Adv Opt Mater, 11, 2202105(2023).

    [46] Y C Chen, Y Li, S F Niu et al. High temperature resistant solar-blind ultraviolet photosensor for neuromorphic computing and cryptography. Adv Funct Mater, 34, 2315383(2024).

    [47] D W Cao, Y Yan, M N Wang et al. Layered wide bandgap semiconductor GaPS4 as a charge-trapping medium for use in high-temperature artificial synaptic applications. Adv Funct Mater, 34, 2314649(2024).

    [48] M Roschke, F Schwierz. Electron mobility models for 4H, 6H, and 3C SiC [MESFETs]. IEEE Trans Electron Devices, 48, 1442(2001).

    [49] S P Karanth, M A Sumesh, V Shobha et al. Electro-optical performance study of 4H-SiC/Pd Schottky UV photodetector array for space applications. IEEE Trans Electron Devices, 67, 3242(2020).

    [50] H P Phan, T Dinh, T K Nguyen et al. High temperature silicon-carbide-based flexible electronics for monitoring hazardous environments. J Hazard Mater, 394, 122486(2020).

    [51] G Wagner, D Schulz, D Siche. Vapour phase growth of epitaxial silicon carbide layers. Prog Cryst Growth and Charact Mater, 47, 139(2003).

    [52] G J Hu, G L Zhong, X X Xiong et al. Improvement of the resistivity uniformity of 8-inch 4H–SiC wafers by optimizing the thermal field. Vacuum, 222, 112961(2024).

    [53] S B Hou, P E Hellström, C M Zetterling et al. 550 °C 4H-SiC p-i-n photodiode array with two-layer metallization. IEEE Electron Device Lett, 37, 1594(2016).

    [54] F Y Du, Q W Song, Z Zhang et al. Fabrication high-temperature 4H-SiC Schottky UV photodiodes by O2 plasma pre-treatment technology. IEEE Photonics Technol Lett, 34, 911(2022).

    [55] F Y Du, Q W Song, X Y Tang et al. Demonstration of high-performance 4H-SiC MISIM ultraviolet photodetector with operation temperature of 550 °C and high responsivity. IEEE Trans Electron Devices, 68, 5662(2021).

    [56] W C Lien, D S Tsai, D H Lien et al. 4H–SiC metal–semiconductor–metal ultraviolet photodetectors in operation of 450 °C. IEEE Electron Device Lett, 33, 1586(2012).

    [57] L A Liu, J H Zhao, G Cao et al. A memristor-based silicon carbide for artificial nociceptor and neuromorphic computing. Adv Mater Technol, 6, 2100373(2021).

    [58] O Kapur, D K Guo, J Reynolds et al. Back-end-of-line SiC-based memristor for resistive memory and artificial synapse. Adv Electron Mater, 8, 2200312(2022).

    [59] X Liu, W Huang, C H Kai et al. Photogated synaptic transistors based on the heterostructure of 4H-SiC and organic semiconductors for neuromorphic ultraviolet vision. ACS Appl Electron Mater, 5, 367(2023).

    [60] S Yuan, Z Feng, B C Qiu et al. Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing. Sci China Mater, 66, 3238(2023).

    [61] X Chen, B K Chen, B Jiang et al. Nanowires for UV–Vis–IR optoelectronic synaptic Devices. Adv Funct Mater, 33, 2208807(2023).

    [62] Y Ren, C L Chang, L Y Ting et al. Flexible pyrene/phenanthro [9, 10-d] imidazole-based memristive devices for mimicking synaptic plasticity. Adv Intell Syst, 1, 1900008(2019).

    [63] J Y Li, Y Z Qian, W Li et al. Polymeric memristor based artificial synapses with ultra-wide operating temperature. Adv Mater, 35, 2209728(2023).

    [64] J C Pérez-Martínez, M Berruet, C Gonzales et al. Role of metal contacts on halide perovskite memristors. Adv Funct Mater, 33, 2305211(2023).

    [65] Z Y Guo, J Y Zhang, X Liu et al. Optoelectronic synapses and photodetectors based on organic semiconductor/halide perovskite heterojunctions: Materials, devices, and applications. Adv Funct Mater, 33, 2305508(2023).

    [66] C S Gao, R J Yu, E L Li et al. Adaptive immunomorphic hardware based on organic semiconductors and oxidized MXene heterostructures for feature information recognition. Cell Rep Phys Sci, 3, 100930(2022).

    [67] X N Sun, Z J Wang, C Si et al. MoxRe(1− x)S2-based optoelectronic synapse for artificial neural visual system application. Adv Funct Mater, 35, 2411999(2025).

    [68] M Lee, W Lee, S Choi et al. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv Mater, 29, 1700951(2017).

    [69] Z Y Xi, M S Liu, J H Zhang et al. Retina-like neuromorphic visual sensor for sensing broad-spectrum ultraviolet light. Adv Opt Mater, 12, 2402193(2024).

    [70] X Y Shan, Z Q Wang, J Xie et al. Hemispherical retina emulated by plasmonic optoelectronic memristors with all-optical modulation for neuromorphic stereo vision. Adv Sci, 11, e2405160(2024).

    [71] Q Liu, Q Wei, H Ren et al. Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite. Nat Commun, 14, 7179(2023).

    [72] J Y Zhang, Z Y Guo, T R Sun et al. Energy-efficient organic photoelectric synaptic transistors with environment-friendly CuInSe2 quantum dots for broadband neuromorphic computing. SmartMat, 5, e1246(2023).

    [73] J Y Zhang, T L Sun, S Zeng et al. Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy, 95, 106987(2022).

    [74] Q B Zhu, B Li, D D Yang et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat Commun, 12, 1798(2021).

    [75] J B Casady, R W Johnson. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid State Electron, 39, 1409(1996).

    [76] D Prasai, W John, L Weixelbaum et al. Highly reliable silicon carbide photodiodes for visible-blind ultraviolet detector applications. J Mater Res, 28, 33(2013).

    [77] F Q Sun, Q F Lu, L Liu et al. Bioinspired flexible, dual-modulation synaptic transistors toward artificial visual memory systems. Adv Mater Technol, 5, 1900888(2020).

    [78] H L Park, H Kim, D Lim et al. Retina-inspired carbon nitride-based photonic synapses for selectiveeetection of UV light. Adv Mater, 32, e1906899(2020).

    [79] L L Jiang, L Yang, X C Wu et al. Helical nanofiber photoelectric synaptic devices for an artificial vision nervous system. Nano Lett, 23, 8146(2023).

    [80] T Yang, S L Chen, X X Li et al. High-performance SiC nanobelt photodetectors with long-term stability against 300 °C up to 180 Days. Adv Funct Mater, 29, 1806250(2019).

    [81] T K Nguyen, H P Phan, T Dinh et al. High-temperature tolerance of the piezoresistive effect in p-4H-SiC for harsh environment sensing. J Mater Chem C, 6, 8613(2018).

    [82] S W Guo, X L Zhao, Y N He et al. Visible-blind photodetector based on pin junction 4H-SiC vertical nanocone array. IEEE Trans Electron Devices, 68, 6208(2021).

    [83] Z Fu, M K Zhang, S Han et al. Local avalanche effect of 4H-SiC pin ultraviolet photodiodes with periodic micro-hole arrays. IEEE Electron Device Lett, 43, 64(2021).

    [84] T Zhang, C Fan, L X Hu et al. A reconfigurable all-optical-controlled synaptic device for neuromorphic computing applications. ACS Nano, 18, 16236(2024).

    [85] S E Ng, N Yantara, N A Tu et al. Retinomorphic color perception based on opponent process enabled by perovskite bipolar photodetectors. Adv Mater, 36, e2406568(2024).

    [86] J Jiang, X Y Shan, J Q Xu et al. Retina-like chlorophyll heterojunction-based optoelectronic memristor with all-optically modulated synaptic plasticity enabling neuromorphic edge detection. Adv Funct Mater, 34, 2409677(2024).

    [87] Z Y Dang, F Guo, Z Q Wang et al. Object motion detection enabled by reconfigurable neuromorphic vision sensor under ferroelectric modulation. ACS Nano, 18, 27727(2024).

    [88] P S Xie, Y C Xu, J W Wang et al. Birdlike broadband neuromorphic visual sensor arrays for fusion imaging. Nat Commun, 15, 8298(2024).

    Boyu Ye, Xiao Liu, Chao Wu, Wensheng Yan, Xiaodong Pi. Synaptic devices based on silicon carbide for neuromorphic computing[J]. Journal of Semiconductors, 2025, 46(2): 021403
    Download Citation