• Chinese Journal of Lasers
  • Vol. 51, Issue 16, 1602410 (2024)
Jianfeng Yan1,*, Heng Guo1, Yuzhi Zhao1, Sumei Wang2, and Liangti Qu3
Author Affiliations
  • 1State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • 2School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • 3Department of Chemistry, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL240868 Cite this Article Set citation alerts
    Jianfeng Yan, Heng Guo, Yuzhi Zhao, Sumei Wang, Liangti Qu. Progress in Laser Fabrication of Microsupercapacitors (Invited)[J]. Chinese Journal of Lasers, 2024, 51(16): 1602410 Copy Citation Text show less
    References

    [1] Simon P, Gogotsi Y. Perspectives for electrochemical capacitors and related devices[J]. Nature Materials, 19, 1151-1163(2020).

    [2] Zhong C, Deng Y D, Hu W B et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 44, 7484-7539(2015).

    [3] Chen J W, Lee P S. Electrochemical supercapacitors: from mechanism understanding to multifunctional applications[J]. Advanced Energy Materials, 11, 2003311(2021).

    [4] Keum K, Kim J W, Hong S Y et al. Flexible/stretchable supercapacitors with novel functionality for wearable electronics[J]. Advanced Materials, 32, e2002180(2020).

    [5] Han F M, Qian O, Meng G W et al. Structurally integrated 3D carbon tube grid-based high-performance filter capacitor[J]. Science, 377, 1004-1007(2022).

    [6] Yang Y R, Song Y, Bo X J et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat[J]. Nature Biotechnology, 38, 217-224(2020).

    [7] Wang B H, Facchetti A. Mechanically flexible conductors for stretchable and wearable E-skin and E-textile devices[J]. Advanced Materials, 31, e1901408(2019).

    [8] Kurra N, Jiang Q, Nayak P et al. Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications[J]. Nano Today, 24, 81-102(2019).

    [9] Wang C F, Wang C H, Huang Z L et al. Materials and structures toward soft electronics[J]. Advanced Materials, 30, e1801368(2018).

    [10] Yan Z, Luo S J, Li Q et al. Recent advances in flexible wearable supercapacitors: properties, fabrication, and applications[J]. Advanced Science, 11, e2302172(2024).

    [11] Jang Y, Kim S M, Spinks G M et al. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems[J]. Advanced Materials, 32, e1902670(2020).

    [12] Liu L, Feng Y, Wu W. Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage[J]. Journal of Power Sources, 410, 69-77(2019).

    [13] Lethien C, le Bideau J, Brousse T. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things[J]. Energy & Environmental Science, 12, 96-115(2019).

    [14] Elshof J E T, Wang Y. Advances in ink-jet printing of MnO2-nanosheet based pseudocapacitors[J]. Small Methods, 3, 1800318(2019).

    [15] Zhang W L, Lei Y J, Ming F W et al. Lignin laser lithography: a direct-write method for fabricating 3D graphene electrodes for microsupercapacitors[J]. Advanced Energy Materials, 8, 1801840(2018).

    [16] Guo H, Xie J W, He G Z et al. A review of ultrafast laser micro/nano fabrication: material processing, surface/interface controlling, and devices fabrication[J]. Nano Research, 17, 6212-6230(2024).

    [17] Stoian R, Colombier J P. Advances in ultrafast laser structuring of materials at the nanoscale[J]. Nanophotonics, 9, 4665-4688(2020).

    [18] Qiao M, Yan J F, Yu J C et al. Research progress in ultrafast laser processing of titanium dioxide micro/nano structures and functional devices[J]. Chinese Journal of Lasers, 49, 2200002(2022).

    [19] Sugioka K. Progress in ultrafast laser processing and future prospects[J]. Nanophotonics, 6, 393-413(2017).

    [20] Xie J W, Qiao M, Zhu D Z et al. Laser induced coffee-ring structure through solid-liquid transition for color printing[J]. Small, 19, 2205696(2023).

    [21] He G Z, Qian C K, Cai Z P et al. Magnetic field-assisted laser shock peening of Ti6Al4V alloy[J]. Advanced Engineering Materials, 25, 2201843(2023).

    [22] Courvoisier A, Booth M J, Salter P S. Inscription of 3D waveguides in diamond using an ultrafast laser[J]. Applied Physics Letters, 109, 031109(2016).

    [23] Hazzan K E, Pacella M, See T L. Laser processing of hard and ultra-hard materials for micro-machining and surface engineering applications[J]. Micromachines, 12, 895(2021).

    [24] Li J Q, Yan J F, Jiang L et al. Nanoscale multi-beam lithography of photonic crystals with ultrafast laser[J]. Light: Science & Applications, 12, 164(2023).

    [25] Saran R, Ginjupalli K, George S D et al. Laser as a tool for surface modification of dental biomaterials: a review[J]. Heliyon, 9, e17457(2023).

    [26] Zhu D Z, Qiao M, Yan J F et al. Three-dimensional patterning of MoS2 with ultrafast laser[J]. Nanoscale, 15, 14837-14846(2023).

    [27] Yang T S, Lin H, Jia B H. Ultrafast direct laser writing of 2D materials for multifunctional photonics devices[J]. Chinese Optics Letters, 18, 023601(2020).

    [28] Li L, Zhou H, Han D D. Fabrication of high-performance LIG-Fe3O4 composite-based micro-supercapacitor by laser direct writing(invited)[J]. Laser & Optoelectronics Progress, 61, 0314005(2024).

    [29] Mu X M, Du J W, Li Y et al. One-step laser direct writing of boron-doped electrolyte as all-solid-state microsupercapacitors[J]. Carbon, 144, 228-234(2019).

    [30] Kamboj N, Purkait T, Das M et al. Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device[J]. Energy & Environmental Science, 12, 2507-2517(2019).

    [31] Kim E, Lee B J, Maleski K et al. Microsupercapacitor with a 500 nm gap between MXene/CNT electrodes[J]. Nano Energy, 81, 105616(2021).

    [32] Jiang X N, Gao R X, Liu G et al. Construction of graphene-based “in-paper” 3D interdigital microelectrodes for high performance metal-free flexible supercapacitors[J]. Small Methods, 6, 2101454(2022).

    [33] Khodabandehlo A, Noori A, Rahmanifar M S et al. Laser-scribed graphene–polyaniline microsupercapacitor for internet-of-things applications[J]. Advanced Functional Materials, 32, 2204555(2022).

    [34] Ye J L, Tan H B, Wu S L et al. Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output[J]. Advanced Materials, 30, e1801384(2018).

    [35] Chen X, Wang S L, Shi J J et al. Direct laser etching free-standing MXene-MoS2 film for highly flexible micro-supercapacitor[J]. Advanced Materials Interfaces, 6, 1901160(2019).

    [36] Sun G Q, Yang H S, Zhang G F et al. A capacity recoverable zinc-ion micro-supercapacitor[J]. Energy & Environmental Science, 11, 3367-3374(2018).

    [37] Jiang Q, Kurra N, Xia C et al. Hybrid microsupercapacitors with vertically scaled 3D current collectors fabricated using a simple cut-and-transfer strategy[J]. Advanced Energy Materials, 7, 1601257(2017).

    [38] Ding X R, Xu X L, He Z H et al. Selective laser carving-induced patterned electrodes for high-performance binder-free and substrate-free all-carbon-based micro-supercapacitors[J]. Carbon, 213, 118177(2023).

    [39] Xie Y T, Zhang H T, Huang H C et al. High-voltage asymmetric MXene-based on-chip micro-supercapacitors[J]. Nano Energy, 74, 104928(2020).

    [40] Huang H C, He J Q, Wang Z X et al. Scalable, and low-cost treating-cutting-coating manufacture platform for MXene-based on-chip micro-supercapacitors[J]. Nano Energy, 69, 104431(2020).

    [41] He W, Ma R J, Kang D J. High-performance, flexible planar microsupercapacitors based on crosslinked polyaniline using laser printing lithography[J]. Carbon, 161, 117-122(2020).

    [42] Wang Y, Zhao Y, Han Y Y et al. Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors[J]. Science Advances, 8, eabn8338(2022).

    [43] Bai S G, Tang Y, Ruan L Y et al. Investigation into the influence of interdigital parameters on electrochemical performance for in-plane supercapacitors via mathematical modeling and conformal mapping techniques[J]. Journal of Energy Storage, 65, 107287(2023).

    [44] Zhuang P Y, Sun Y Y, Li L et al. FIB-patterned nano-supercapacitors: minimized size with ultrahigh performances[J]. Advanced Materials, 32, 1908072(2020).

    [45] Zhong M Z, Zhang M, Li X F. Carbon nanomaterials and their composites for supercapacitors[J]. Carbon Energy, 4, 950-985(2022).

    [46] Mohamed N B, El-Kady M F, Kaner R B. Macroporous graphene frameworks for sensing and supercapacitor applications[J]. Advanced Functional Materials, 32, 2203101(2022).

    [47] Xu T, Wang Y X, Liu K et al. Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor[J]. Advanced Composites and Hybrid Materials, 6, 108(2023).

    [48] Zhang W, Li W X, Li S A. Self-template activated carbons for aqueous supercapacitors[J]. Sustainable Materials and Technologies, 36, e00582(2023).

    [49] Shi H, Wang B, Wang L D et al. Large-scale preparation of thermally conductive graphene fiber filaments[J]. Carbon, 221, 118947(2024).

    [50] Liu Q, Liang J, Tian B et al. A continuous gradient chemical reduction strategy of graphene oxide for highly efficient evaporation-driven electricity generation[J]. Small Methods, 7, 2300304(2023).

    [51] Hu H, Li Q, Li L Q et al. Laser irradiation of electrode materials for energy storage and conversion[J]. Matter, 3, 95-126(2020).

    [52] You R, Liu Y Q, Hao Y L et al. Laser fabrication of graphene-based flexible electronics[J]. Advanced Materials, 32, 1901981(2020).

    [53] Xie J W, Zhao Y Z, Zhu D Z et al. A machine learning-combined flexible sensor for tactile detection and voice recognition[J]. ACS Applied Materials & Interfaces, 15, 12551-12559(2023).

    [54] Zou T T, Zhao B, Xin W et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse[J]. Light: Science & Applications, 9, 69(2020).

    [55] Lu Y Y, Yang G, Wang S Q et al. Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics[J]. Nature Electronics, 7, 51-65(2024).

    [56] Lipovka A, Fatkullin M, Shchadenko S et al. Textile electronics with laser-induced graphene/polymer hybrid fibers[J]. ACS Applied Materials & Interfaces, 15, 38946-38955(2023).

    [57] Avinash K, Patolsky F. Laser-induced graphene structures: from synthesis and applications to future prospects[J]. Materials Today, 70, 104-136(2023).

    [58] Yoon H, Lee K, Shin H et al. In situ co-transformation of reduced graphene oxide embedded in laser-induced graphene and full-range on-body strain sensor[J]. Advanced Functional Materials, 33, 2300322(2023).

    [59] El-Kady M F, Strong V, Dubin S et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 335, 1326-1330(2012).

    [60] Shi H H, Jang S, Naguib H E. Freestanding laser-assisted reduced graphene oxide microribbon textile electrode fabricated on a liquid surface for supercapacitors and breath sensors[J]. ACS Applied Materials & Interfaces, 11, 27183-27191(2019).

    [61] Lin J, Peng Z W, Liu Y Y et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014).

    [62] Zhang W L, Lei Y J, Jiang Q et al. 3D laser scribed graphene derived from carbon nanospheres: an ultrahigh-power electrode for supercapacitors[J]. Small Methods, 3, 1900005(2019).

    [63] Wang L F, Ding Y, Xu Z Q et al. Picosecond ultraviolet laser patterned in-plane asymmetric micro-supercapacitors with high-precision capacity matching[J]. Energy Storage Materials, 65, 103132(2024).

    [64] Liu H L, Xie Y X, Liu J B et al. Laser-induced and KOH-activated 3D graphene: a flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors[J]. Chemical Engineering Journal, 393, 124672(2020).

    [65] Miyakoshi R, Hayashi S, Terakawa M. Direct patterning of conductive structures on hydrogels by laser-based graphitization for supercapacitor fabrication[J]. Advanced Electronic Materials, 9, 2201277(2023).

    [66] Huang F, Zhou S K, Yan Z Y et al. Laser carbonization of lignin-based fiber membranes with heating treatment for flexible supercapacitors[J]. Applied Surface Science, 619, 156757(2023).

    [67] Petrov I, Rodriguez R D, Frantsina E et al. Transforming oil waste into highly conductive composites: enabling flexible electronics through laser processing of asphaltenes[J]. Advanced Composites and Hybrid Materials, 7, 41(2024).

    [68] Liu Z D, Duan C P, Dou S M et al. Ultrafast porous carbon activation promises high-energy density supercapacitors[J]. Small, 18, 2200954(2022).

    [69] Kim J G, Yu H, Jung J Y et al. 3D architecturing strategy on the utmost carbon nanotube fiber for ultra-high performance fiber-shaped supercapacitor[J]. Advanced Functional Materials, 32, 2113057(2022).

    [70] van den Bergh W, Lokupitiya H N, Vest N A et al. Nanostructure dependence of T-Nb2O5 intercalation pseudocapacitance probed using tunable isomorphic architectures[J]. Advanced Functional Materials, 31, 2007826(2021).

    [71] Zhao Z Y, Xia K Q, Hou Y et al. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers[J]. Chemical Society Reviews, 50, 12702-12743(2021).

    [72] Lee J H, Yang G J, Kim C H et al. Flexible solid-state hybrid supercapacitors for the internet of everything (IoE)[J]. Energy & Environmental Science, 15, 2233-2258(2022).

    [73] Wang L, Peng Q, Shen X Y et al. Mesoporous Bi2MoO6 quasi-nanospheres anchored on activated carbon cloth for flexible all-solid-state supercapacitors with enhanced energy density[J]. Journal of Power Sources, 463, 228202(2020).

    [74] Zhao N, Fan H Q, Zhang M C et al. Simple electrodeposition of MoO3 film on carbon cloth for high-performance aqueous symmetric supercapacitors[J]. Chemical Engineering Journal, 390, 124477(2020).

    [75] Wang Y M, Wang X, Li X L et al. Intercalating ultrathin MoO3 nanobelts into MXene film with ultrahigh volumetric capacitance and excellent deformation for high-energy-density devices[J]. Nano-Micro Letters, 12, 115(2020).

    [76] Lai F L, Yang C, Lian R Q et al. Three-phase boundary in cross-coupled micro-mesoporous networks enabling 3-printed and ionogel-based quasi-solid-state micro-supercapacitors[J]. Advanced Materials, 32, 2002474(2020).

    [77] Chu X, Chen G R, Xiao X et al. Air-stable conductive polymer ink for printed wearable micro-supercapacitors[J]. Small, 17, e2100956(2021).

    [78] Han M G, Zhu Y X, Wang G T et al. Full laser irradiation processed Pb-graphene nanocomposite electrodes toward the manufacturing of high-performance supercapacitors[J]. Carbon, 216, 118583(2024).

    [79] Park S, Choi S H, Kim J M et al. Nanoarchitectonics of MXene derived TiO2/graphene with vertical alignment for achieving the enhanced supercapacitor performance[J]. Small, 20, e2305311(2024).

    [80] Cai J G, Lü C, Hu C et al. Laser direct writing of heteroatom-doped porous carbon for high-performance micro-supercapacitors[J]. Energy Storage Materials, 25, 404-415(2020).

    [81] Liu H L, Moon K S, Li J X et al. Laser-oxidized Fe3O4 nanoparticles anchored on 3D macroporous graphene flexible electrodes for ultrahigh-energy in-plane hybrid micro-supercapacitors[J]. Nano Energy, 77, 105058(2020).

    [82] Hawes G F, Verma P, Uceda M et al. Salt-induced doping and templating of laser-induced graphene supercapacitors[J]. ACS Applied Materials & Interfaces, 15, 10570-10584(2023).

    [83] Sun Q, Ma X L, Liu X X et al. Electrochemical energy storage performance of one-step laser written Cu-C composites[J]. Electrochimica Acta, 476, 143739(2024).

    [84] Zhang C, Peng Z X, Huang C L et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems[J]. Nano Energy, 81, 105609(2021).

    [85] Khandelwal M, van Tran C, Lee J et al. Nitrogen and boron co-doped densified laser-induced graphene for supercapacitor applications[J]. Chemical Engineering Journal, 428, 131119(2022).

    [86] Huang A L, El-Kady M F, Chang X Y et al. Facile fabrication of multivalent VOx/graphene nanocomposite electrodes for high-energy-density symmetric supercapacitors[J]. Advanced Energy Materials, 11, 2100768(2021).

    [87] Huang S, Du X F, Li X et al. Ultrahigh-areal capacitance flexible supercapacitors based on laser assisted construction of hierarchical aligned carbon nanotubes[J]. Advanced Functional Materials, 31, 2104531(2021).

    [88] van Lam D, Nguyen U N T, Roh E et al. Graphitic carbon with MnO/Mn7C3 prepared by laser-scribing of MOF for versatile supercapacitor electrodes[J]. Small, 17, 2100670(2021).

    [89] Brousse K, Pinaud S, Nguyen S et al. Facile and scalable preparation of ruthenium oxide-based flexible micro-supercapacitors[J]. Advanced Energy Materials, 10, 1903136(2020).

    [90] Hung T F, Yin Z W, Betzler S B et al. Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors[J]. Chemical Engineering Journal, 367, 115-122(2019).

    [91] Deng S F, Guo H, Yan J F et al. NIR-UV dual-mode photodetector with the assistance of machine-learning fabricated by hybrid laser processing[J]. Chemical Engineering Journal, 472, 144908(2023).

    [92] Zang X N, Jian C Y, Zhu T S et al. Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications[J]. Nature Communications, 10, 3112(2019).

    [93] Tang J, Yi W D, Zhong X W et al. Laser writing of the restacked titanium carbide MXene for high performance supercapacitors[J]. Energy Storage Materials, 32, 418-424(2020).

    [94] Li H, Liu Y Q, Lin S et al. Laser crystallized sandwich-like MXene/Fe3O4/MXene thin film electrodes for flexible supercapacitors[J]. Journal of Power Sources, 497, 229882(2021).

    [95] Zhang W, Li R, Zheng H et al. Laser-assisted printing of electrodes using metal‒organic frameworks for micro-supercapacitors[J]. Advanced Functional Materials, 31, 2009057(2021).

    [96] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light: Science & Applications, 7, 17134(2018).

    [97] Yan C Y, Sun S Z, Liu X F et al. Research progress on preparation of three-dimensional micro-nano connected structures in transparent materials by femtosecond laser material reduction method[J]. Laser & Optoelectronics Progress, 60, 2100001(2023).

    [98] Li Z H, Wei X M, Yang Z M. Pulsed laser 3D-micro/nanostructuring of materials for electrochemical energy storage and conversion[J]. Progress in Materials Science, 133, 101052(2023).

    [99] Yang D, Nam H K, Le T S D et al. Multimodal E-textile enabled by one-step maskless patterning of femtosecond-laser-induced graphene on nonwoven, knit, and woven textiles[J]. ACS Nano, 17, 18893-18904(2023).

    [100] Li Q, Wang Q Z, Li L L et al. Femtosecond laser-etched MXene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections[J]. Advanced Energy Materials, 10, 2000470(2020).

    [101] Zheng X H. Enhancing the ion accessibility of Ti3C2Tx MXene films by femtosecond laser ablation towards high-rate supercapacitors[J]. Journal of Alloys and Compounds, 899, 163275(2022).

    [102] Hu Y J, Wu M M, Chi F Y et al. Ultralow-resistance electrochemical capacitor for integrable line filtering[J]. Nature, 624, 74-79(2023).

    [103] Xu C Y, Jiang L, Li X et al. Miniaturized high-performance metallic 1T-Phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses[J]. Nano Energy, 67, 104260(2020).

    [104] Yang H J, Lee J W, Seo S H et al. Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes[J]. Nano Energy, 86, 106083(2021).

    [105] Guo H, Yan J F, Jiang L et al. Femtosecond laser Bessel beam fabrication of a supercapacitor with a nanoscale electrode gap for high specific volumetric capacitance[J]. ACS Applied Materials & Interfaces, 14, 39220-39229(2022).

    [106] In J B, Hsia B, Yoo J H et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide[J]. Carbon, 83, 144-151(2015).

    [107] Wang S T, Yu Y C, Li R Z et al. High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets[J]. Electrochimica Acta, 241, 153-161(2017).

    [108] Liu H L, Zheng Y X, Moon K S et al. Ambient-air in situ fabrication of high-surface-area, superhydrophilic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage[J]. Nano Energy, 94, 106902(2022).

    [109] Li Q, Ding Y, Yang L J et al. Periodic nanopatterning and reduction of graphene oxide by femtosecond laser to construct high-performance micro-supercapacitors[J]. Carbon, 172, 144-153(2021).

    [110] Le T S D, Lee Y A, Nam H K et al. Green flexible graphene–inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses[J]. Advanced Functional Materials, 32, 2107768(2022).

    [111] Le T S D, Park S, An J N et al. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics[J]. Advanced Functional Materials, 29, 1902771(2019).

    [112] Guo H, Yan J F, Li X et al. Patterned graphene oxide by spatially-shaped femtosecond laser[J]. Chinese Journal of Lasers, 48, 0202018(2021).

    [113] Yuan Y J, Jiang L, Li X et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication[J]. Nature Communications, 11, 6185(2020).

    [114] Tao L Q, Tian H, Liu Y et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene[J]. Nature Communications, 8, 14579(2017).

    [115] Guo H, Yan J F, Jiang L et al. Conductive writing with high precision by laser-induced point-to-line carbonization strategy for flexible supercapacitors[J]. Advanced Optical Materials, 9, 2100793(2021).

    [116] Wang S C, Hu J, Jiang L et al. High-performance 3D CuO/Cu flowers supercapacitor electrodes by femtosecond laser enhanced electrochemical anodization[J]. Electrochimica Acta, 293, 273-282(2019).

    [117] Wang S C, Liu H L, Hu J et al. In situ synthesis of NiO@Ni micro/nanostructures as supercapacitor electrodes based on femtosecond laser adjusted electrochemical anodization[J]. Applied Surface Science, 541, 148216(2021).

    [118] Wang S T, Yu Y C, Ma D L et al. High performance hybrid supercapacitors on flexible polyimide sheets using femtosecond laser 3D writing[J]. Journal of Laser Applications, 29, 022203(2017).

    [119] Yuan Y J, Jiang L, Li X et al. Ultrafast shaped laser induced synthesis of MXene quantum dots/graphene for transparent supercapacitors[J]. Advanced Materials, 34, 2110013(2022).

    [120] Xie Y, Zhang J H, Xu H R et al. Laser-assisted mask-free patterning strategy for high-performance hybrid micro-supercapacitors with 3D current collectors[J]. Chemical Engineering Journal, 437, 135493(2022).

    [121] Lee S H, Lee J, Jung J et al. Enhanced electrochemical performance of micro-supercapacitors via laser-scribed cobalt/reduced graphene oxide hybrids[J]. ACS Applied Materials & Interfaces, 13, 18821-18828(2021).

    [122] Guo H, Qiao M, Yan J F et al. Fabrication of hybrid supercapacitor by MoCl5 precursor-assisted carbonization with ultrafast laser for improved capacitance performance[J]. Advanced Functional Materials, 33, 2213514(2023).

    Jianfeng Yan, Heng Guo, Yuzhi Zhao, Sumei Wang, Liangti Qu. Progress in Laser Fabrication of Microsupercapacitors (Invited)[J]. Chinese Journal of Lasers, 2024, 51(16): 1602410
    Download Citation