• Journal of Advanced Dielectrics
  • Vol. 11, Issue 2, 2150013 (2021)
A. Oueslati1 and A. Aydi2、*
Author Affiliations
  • 1Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of Sciences, University of Sfax, B.P.1171, 3000 Sfax, Tunisia
  • 2Laboratory of Multifunctional Materials and Applications (LaMMA), LR16ES18, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia
  • show less
    DOI: 10.1142/S2010135X21500132 Cite this Article
    A. Oueslati, A. Aydi. Impedance and modulus studies of Na0.9Ba0.1Nb0.9(Sn0.5Ti0.5)0.1O3 ceramic[J]. Journal of Advanced Dielectrics, 2021, 11(2): 2150013 Copy Citation Text show less
    References

    [1] H. Sharma, S. Jindal, N. Aggarwal. Impact of copper doping on perovskite structure ferroelectric ceramic. Mater. Today: Proc., 33, 1632(2020).

    [2] H. P. Uppara, H. Dasari, S. K. Singh, N. K. Labhsetwar, M. S. Murari. Effect of copper doping over GdFeO3 perovskite on soot oxidation activity. Catal. Lett., 149, 3097(2019).

    [3] S. Zhang, D. Guo, M. Wang, M. S. Javed, C. Hu. Magnetism in SrTiO3 before and after UV irradiation. Appl. Surf. Sci., 335, 115(2015).

    [4] M. V. Shisode, D. N. Bhoyar, P. P. Khirade, K. Jadhav. Structural, microstructural, magnetic, and ferroelectric properties of Ba2+-doped BiFeO3 nanocrystalline multifferroic material. J. Supercond. Nov. Magn., 31, 2501(2018).

    [5] T. Xian, H. Yang, L. Di, J. Dai. Enhanced photocatalytic activity of BaTiO3@ g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation. J. Alloys Compd., 622, 1098(2015).

    [6] P. P. Khirade, S. D. Birajdar, A. V. Humbe, K. Jadhav. Structural, electrical and dielectrical property investigations of Fe-doped BaZrO3 nanoceramics. J. Electron. Mater., 45, 3227(2016).

    [7] J. Wang, S. Jiang, D. Jiang, J. Tian, Y. Li, Y. Wang. Microstructural design of BaTiO3-based ceramics for temperature-stable multilayer ceramic capacitors. Ceram. Int., 38, 5853(2012).

    [8] D.-J. Shin, S.-J. Jeong, C.-E. Seo, K.-H. Cho, J.-H. Koh. Multi-layered piezoelectric energy harvesters based on PZT ceramic actuators. Ceram. Int., 41, S686(2015).

    [9] R. Gautier, O. K. Anderson, P. Gougeon, J. F. Halet, E. Canadell, J. D. Martin. Electronic structure, electrical and magnetic properties of RMo8O14 compounds (R = La, Ce, Pr, Nd, Sm) containing bicapped Mo8 clusters. Inorg. Chem., 41, 4689(2002).

    [10] J. W. Liou, B. S. Chiou. Dielectric characteristics of doped Ba1−xSrxTiO3 at the paraelectric state. Mater. Chem. Phys., 51, 59(1997).

    [11] W. Xiaoli, B. Li. Dielectric audio-frequency dispersion in Ba(Ti1−xSnx)O3 ferroelectrics. J. Solid State Commun., 149, 537(2009).

    [12] V. V. Shvartsman, W. Kleemann, J. Dec. Diffuse phase transition in BaTi1−xSnxO3ceramics: An intermediate state between ferroelectric and relaxor behavior. J. Appl. Phys., 99, 124111(2006).

    [13] H. D. Magaw. The seven phases of sodium niobate. Ferroelectrics, 7, 87(1974).

    [14] H. Khelifi, A. Aydi, N. Abdelmoula, A. Simon, A. Maalej, H. Khemakhem, M. Maglione. Structural and dielectric properties of Na1−xBaxNb1−x(Sn0.5Ti0.5)xO3 ceramics. J. Mater. Sci., 47, 1943(2012).

    [15] C. Y. Hsu, H. Chou, B. Y. Liao, J. C. A. Huang. Magnetostriction studies in an antiferromagnetic polycrystalline Mn42Fe58Mn42Fe58 alloy. Appl. Phys. Lett., 89, 262501(2006).

    [16] B. Shanmugavelu, V. V. Ravi. Thermal, structural and electrical studies of bismuth zinc borate glasses. Solid State Sci., 20, 59(2013).

    [17] D. D. Macdonald. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta, 51, 1376(2006).

    [18] S. Selvasekarapandian, M. Vijaykumar. The ac impedance spectroscopy studies on LiDyO2. Mater. Chem. Phys., 80, 29(2003).

    [19] M. A. L. Nobre, S. Lanfredi. Dielectric properties of Bi3Zn2Sb3O14 ceramics at high temperature. Mater. Lett., 47, 362(2001).

    [20] M. Ram. Role of grain boundary in transport properties of LiCo3/5Mn2/5VO4 ceramics. Phys. B: Phys. Condens. Matter, 405, 602(2010).

    [21] B. Tiwari, R. N. Choudhary. Complex impedance spectroscopic analysis of Mn-modified Pb (Zr0.65Ti0.35)O3 electroceramics. J. Phys. Chem. Solids, 69, 2852(2008).

    [22] S. K. Barik, R. N. Choudhary, P. K. Mahapatra. Structural and electrical properties of Na1/2Gd1/2TiO3 nanoceramics. J. Alloys Compd., 459, 35(2008).

    [23] S. Saha, T. P. Sinha. Low-temperature scaling behavior of BaFe0.5Nb0.5O3. Phys. Rev. B, 65, 134103(2002).

    [24] F. Yakuphanoglu, Y. Aydogdu, U. Schatzschneider, E. Rentschler. DC and AC conductivity and dielectric properties of the metal-radical compound: Aqua [bis (2-dimethylaminomethyl-4-NIT-phenolato)] copper (II). Solid State Commun., 128, 63(2003).

    [25] R. H. Chen, R. Y. Chang, S. C. Shern. Dielectric and AC ionic conductivity investigations in K3H (SeO4) 2 single crystal. J. Phys. Chem. Solids, 63, 2069(2002).

    [26] P. S. Anantha, K. Hariharn. AC conductivity analysis and dielectric relaxation behaviour of NaNO3–Al2O3 composites. Mater. Sci. Eng. B, 121, 12(2005).

    [27] P. B. Macedo, C. T. Moynihan, R. Bose. The role of ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glasses, 13, 171(1972).

    [28] S. L. Agrawal, M. Singh, M. Tripathi, D. M. Mauli, K. Pandey. Dielectric relaxation studies on [PEO–SiO2]: NH4SCN nanocomposite polymer electrolyte films. J. Mater. Sci., 44, 6060(2009).

    [29] N. Hannachi, I. Chaabane, K. Guidara, A. Bulou, F. Hlel. AC electrical properties and dielectric relaxation of [N(C3H7)4]2Cd2Cl6, single crystal. Mater. Sci. Eng. B, 172, 2(2010).

    [30] V. Provenzano, L. P. Boesch, V. Volterra, C. T. Moynihan, P. B. Macedo. Electrical relaxation in Na2O ⋅ 3SiO2 glass. J. Am. Ceram. Soc., 55, 492(1972).

    [31] B. Behera, P. Nayak, R. N. P. Choudhary. Study of complex impedance spectroscopic properties of LiBa2Nb5O15 ceramics. Mater. Chem. Phys., 106, 193(2007).

    [32] S. Saha, T. P. Sinha. Low-temperature scaling behavior of BaFe0.5Nb0.5O3. Phys. Rev. B, 65, 134103(2002).

    [33] K. P. Padmasree, D. K. Kanchan, A. R. Kulkarni. Impedance and modulus studies of the solid electrolyte system 20CdI2–80 [xAg2O–y (0.7 V2O5–0.3 B2O3)], where 1 ≤x/y≤ 3. Solid State Ionics, 177, 475(2006).

    [34] B. Louati, K. Guidara, M. Gargouri. Dielectric and ac ionic conductivity investigations in the monetite. J. Alloys Compd., 472, 347(2009).

    [35] S. Havriliak, S. Negami. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer, 8, 161(1967).

    [36] J. C. Dyre. Source of non-Arrhenius average relaxation time in glass-forming liquids. J. Non-Cryst. Solids, 235–237, 142(1998).

    [37] F. Alvarez, A. Alegria, Colmenero . Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. J. Phys. Rev. B, 44, 7306(1991).

    [38] F. Alvarez, A. Alegria, Colmenero . Interconnection between frequency-domain Havriliak-Negami and time-domain Kohlrausch-Williams-Watts relaxation functions. J. Phys. Rev. B, 47, 125(1993).

    [39] B. V. R. Chowdari, R. Gopalakrishnan. AC conductivity analysis of glassy silver iodomolybdate system. Solid State Ionics, 23, 225(1987).

    A. Oueslati, A. Aydi. Impedance and modulus studies of Na0.9Ba0.1Nb0.9(Sn0.5Ti0.5)0.1O3 ceramic[J]. Journal of Advanced Dielectrics, 2021, 11(2): 2150013
    Download Citation