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Polycrystalline Na0.9Ba0.1Nb0.9(Sn0.5Ti0.5)0.1O3 is prepared by the solid-state reaction technique. The formation of single-phase 
material was confirmed by an X-ray diffraction study and it was found to be a tetragonal phase at room temperature. Nyquist 
plots (Z″ versus Z′) show that the conductivity behavior is accurately represented by an equivalent circuit model which consists 
of a parallel combination of bulk resistance and constant phase elements (CPE). The frequency dependence of the conductivity is 
interpreted in terms of Jonscher’s law. The conductivity sdc follows the Arrhenius relation. The modulus plots can be characterized 
by the empirical Kohlrausch–Williams–Watts (KWW), j(t) = exp(−(t/t)β) function and the value of the stretched exponent (b) is 
found to be almost independent of temperature. The near value of activation energies obtained from the analyses of modulus and 
conductivity data confirms that the transport is through an ion hopping mechanism dominated by the motion of the (O2−) ions in 
the structure of the investigated material.
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1.  Introduction

With high demand and rapid progress in the miniaturiza-
tion of electrical components, considerable attention has 
been paid to the function and role of interfaces in electro-
ceramics. These materials exhibit a variety of physical 
properties such as application in laser host,1 ferroelectric/
ferroelastic behavior,2,3 ferromagnetism,4 anomalous semi-
conductor to metal transition,5 spin-glass behavior,6 ionic 
conductors,7,8 and semiconductor.9 These applications need 
a compound with high electrical conductivity and good 
thermal and chemical stability. In fact, many new solid solu-
tions with excellent properties have been developed, such as 
Ba1−x SrxTiO3,10 BaTi1−x SnxO3,11,12 and NaNbO3

13 ceram-
ics. As an element of this group, the present work selected 
Na0.9Ba0.1Nb0.9(Sn0.5Ti0.5)0.1O3 material for investigation. 
It  crystallizes in the tetragonal structure.14 Electrical con-
duction in these materials has contributions from grains 
(bulk), grain boundaries, and electrode specimen interface.15 
To understand the conduction behavior, it is necessary to sep-
arate various contributions to the total observed resistance. 
Complex impedance spectroscopy is an important and pow-
erful tool to study defects, microstructure, surface chemistry, 
and electrical properties of materials. In the present research 

work, we have prepared Na0.9Ba0.1Nb0.9 (Sn0.5Ti0.5)0.1O3 

ceramic by a solid-state synthesis. By designing an electrical 
equivalent circuit, we tried to explain the electrical conduc-
tion and relaxation mechanism. 

2.  Experimental Procedure

The polycrystalline ceramics sample of Na0.9Ba0.1Nb0.9 
(Sn0.5Ti0.5)0.1O3 was prepared by a conventional standard 
solid-state synthesis. The appropriate stoichiometric ratio of 
the precursors (BaCO3, Na2CO3, Nb2O5, TiO2, and SnO2) of 
high purity (99.9%) were weighted and initially mixed in an 
agate mortar in order to make a homogenous mixture of the 
ingredients for 1 h. Then the powder was calcined in air at 
1300 K for 12 h. After calcination, the powder was pressed 
into pellets of 8 mm diameter and 1.6 mm thickness using 
3 t/cm2 uniaxial pressure. These pellets have been sintered at 
1523 K for 2 h in the air atmosphere. 

The material formation was confirmed by an X-ray dif-
fraction study. XRD pattern of the material was recorded at 
room temperature using a Phillips powder diffractometer PW 
1710 with CuKα radiation (l = 1.5419 Å) in a wide range of 
Bragg angles (5° ≤ 2q ≤ 80°). Unit cells parameters of the 
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synthesized compound have been refined by the least square 
method from the powder data. 

The microstructure of the compound was imaged using 
scanning electron microscopy (SEM, JSM EMP-2300).

The sintered pellet was used for electrical conductivity 
measurements. The metallization by a gold layer of the two 
parallel surfaces of this pellet made it possible to carry out 
studies of electrical conductivity. The ac conductivity mea-
surements were performed with a Tegam 3550 impedance 
analyzer (200 Hz–5 MHz) which was also interfaced with 
a computer and a temperature controller. Measurements 
were carried out at temperatures from 450 K to 723 K. The 
temperature of the sample was measured with the aid of a 
copper-constant a thermocouple placed near the sample.

Complex impedance data, Z*, can be represented by its 
real, Z′, and imaginary, Z″, parts by the relation Z* = Z′ – iZ″.

3.  Results and Discussion

3.1.  Powder X-ray analysis

The room temperature powders X-ray diffractogram of 
the Na0.9Ba0.1Nb0.9 (Sn0.5Ti0.5)0.1O3 compound is shown in 
Fig. 1. All the reflection peaks were indexed in the tetragonal 
symmetry with the P4mm space group. The refined lattice 
parameters are a = 3.918(8) Å and c = 3.928(1) Å, and V = 
391.577(4) Å3 with an estimated standard deviation in paren-
thesis. The unit cell parameters are in good agreement with 
the literature values.1

3.2.  Impedance analysis and equivalent circuit

Impedance spectroscopy is a useful method to resolve the 
contributions of various processes such as bulk, grain bound-
ary, and electrode effect in the specified frequency domain. In 
addition, the resistance and the capacitance associated with 
the solids could be estimated using impedance spectroscopy. The Nyquist plots (imaginary part of complex impedance Z″ 

versus real part of complex impedance Z′) of impedance data 
of Na0.9Ba0.1Nb0.9 (Sn0.5Ti0.5)0.1O3 at several temperatures are 
shown in Figs. 2(a) and 2(b).  The plots are characterized by 
the appearance of semicircle arcs whose pattern changes, but 
not their shape, when the temperature is raised. The center 
of these semicircles is depressed below the real axis, indicat-
ing the non-Debye type of relaxation process.16 The best fits 
are obtained when we use an equivalent circuit in evolving 
a resistance Rb (bulk resistance) and constant phase element 
(CPE). Figure 3 shows the equivalent circuit. The impedance 
ZCPE is given by the relationship:

αω
=CPE

1
,

( )
Z

Q j
� (1)

where a (0 < a < 1) is the measure of the capacitive nature 
of the element17: if a = 1, the element is an ideal capacitor 
and if a = 0, it behaves as a frequency-independent ohmic 
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Fig. 1.    X-ray diffraction pattern of Na0.9Ba0.1Nb0.9 (Sn0.5Ti0.5)0.1O3 
ceramic sample.

Fig. 2.    (a) and (b): Complex impedance plots (measured and 
calculated) of Na0.9Ba0.1Nb0.9 (Sn0.5Ti0.5)0.1O3 ceramic at different 
temperatures.
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resistor. Q is the CPE parameter (expressed in Farad units). 
The expression of real (Z′) and imaginary (−Z″) components 
of impedance related to the equivalent circuit is

α

α α

ω απ
ω απ ω απ

+
=′

+ +

2

2 2

cos( / 2)
,

(1 cos( / 2)) ( sin( / 2))
b b

b b

R Q R
Z

R Q R Q
� (2)

α

α α

ω απ
ω απ ω απ

− =′′
+ +

2

2 2

sin( / 2)
.

(1 cos( / 2)) ( sin( / 2))
b

b b

R Q
Z

R Q R Q
� (3)

The parameters Rb, Q, and a have been obtained by using a 
mean square method that is used to minimize the difference 
between the experimental and calculated data. 

In Fig. 4, we show the experimental and calculated val-
ues of Z′ as a function of ω using the equivalent circuit. The 
decrease in Z′ with a rise in temperature and frequency indi-
cates the possibility of an increase in the ac conductivity with 
an increase in temperature and frequency.18 All the curves 
merge in the high-frequency region (> 105 Hz), and then Z′ 
becomes independent of frequency. This may be attributed 
to the release of space charge at higher temperatures.19,20 The 
angular frequency dependence of the experimental and sim-
ulated (solid line) of the imaginary part of impedance (Z″) 

at various temperatures is shown in Fig. 5. The nature of 
variation of Z″ with frequency is characterized by (a) the 
appearance of peaks at a particular frequency, (b) a decrease 
in the height of the peaks with a rise in temperature, (c) sig-
nificant broadening of the peaks with a rise in temperature, 
(d) marked asymmetry in the peak pattern, and (e) merger 
of the spectrum at higher frequencies irrespective of temper
ature.21,22  All these characteristics mainly indicate the tem-
perature dependency of relaxation time. The frequency range 
of this relaxation suggests that relaxation is due to the free 
charges (ions, electrons, oxygen vacancies, etc.) which are 
trapped in intergrain space and electrode–electrolyte inter-
face. The scaling has been attempted with the imaginary 
part of impedance (Z″) data as shown in Fig. 5 (inset). The 
Z″ plots at different temperatures overlap on a single master 
curve indicating that the dynamical process occurring at dif-
ferent frequencies has the same thermal activation energy,23 
which could be interpreted to mean there is no temperature 
dependence of conductivity. 

Nyquist plots reported in Figs. 2, 4, and 5 show a good 
agreement between theoretical and experimental data. Fitted 
values of Rb, Q, and a parameters for different temperatures 
are listed in Table 1. It is obvious that all the capacitance 
values (Q) are in the range of pF. This implies that the sin-
gle semicircular response is from grain interiors, which is 
expected from the sample where no grain boundaries are 
involved. The values of a vary in the range 0.86–0.96 con-
firming the weakness interaction between localized sites. The 
electrical conductivity can be obtained from

s − ,b
b

h

R S
� (4)

where h and S are the thickness and cross-sectional area of 
the pellet, respectively. The temperature dependence of the 

Fig. 3.    Equivalent circuit model of the Na0.9Ba0.1Nb0.9 (Sn0.5Ti0.5)0.1O3 

compound.
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Fig. 5.    Variation of imaginary part of the impedance Z″ as a 
function of frequency. Inset shows the scaling behavior of Im(Z″).
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conductivity is represented in Fig. 6 in the form of ln(sbT) 
versus 1000/T. The linear behavior of electrical conductiv-
ity is in close agreement with the Arrhenius relation sbT = A 
exp(−Ea/kBT), where Ea = 0.91 eV is the activation energy, kB 
is the Boltzmann constant, and T is the absolute temperature. 

3.3.  Ac conductivity analysis

For analyzing the dynamic response of the material based on 
the alternating electric field, the study of experimental data 
has been done on the real part s′ of the complex conductivity 
of the material s*, also known as ac conductivity (sac).

The angular frequency dependence of the ac conductivity 
at various temperatures for the sample is shown in Fig. 7. 
It is clear from the plot that the conductivity increases with 
the increase in frequency. From the previously mentioned 
figure, it is also evident that the dc contribution is import-
ant at low frequencies and high temperatures, yet in the low 
frequency region, the conductivity depends on temperature. 
Such dependence may be described by the variable range 
hopping mechanism,24 which is frequency independent and 
only weakly temperature dependent compared with band 
theory. This model is important for the electrical conduction 
mechanism. This observed behavior was found to follow 
Johnscher’s universal power law:

sac = sdc + Awn,

where sdc is the direct current conductivity of the sample, A is 
a constant for a particular temperature, and n is the tempera-
ture-dependent exponent in the range of 0 ≤ n ≤ 1. The expo-
nent n represents the degree of interaction between mobile 
ions with the lattices around them and the prefactor exponent 
A determines the strength of polarizability.25 Further rise in 
the conductivity value with temperature indicates that the 
electrical conduction in the material is a thermally activated 
process. These results agree well with the observations from 
impedance spectrum analysis. The variation of Ln(sdcT) ver-
sus 1000/T is shown in Fig. 8; it follows the Arrhenius rela-
tion with the activation energy Ec = 0.94 eV.

3.4.  Modulus analysis

The complex modulus was introduced in this study to deter-
mine the parameters of the charge carrier and the relaxation 
time of the conductivity; it allows eliminating the problems 
related to the polarization of electrodes or other interfacial 
effects in the solid electrode.26 Macedo et al.27 formulated a 

Table 1.    Resulting parameters of each fitting corresponding 
to the equivalent circuits of Fig. 3.

Temperature (K) Rb (ohms) Q (Farad) a

573 4.32E+06 7.31E-12 0.961

583 3.68E+06 7.07E-12 0.956

593 3.37E+06 5.91E-12 0.951

603 2.72E+06 5.90E-12 0.945

608 2.17E+06 4.00E-12 0.937

618 1.69E+06 4.12E-12 0.931

628 1.31E+06 4.35E-12 0.921

643 8.99E+05 4.64E-12 0.912

653 6.75E+05 4.88E-12 0.905

663 5.17E+05 3.55E-12 0.901

673 3.98E+05 3.24E-12 0.898

688 3.14E+05 3.21E-12 0.895

703 2.50E+05 3.09E-12 0.896

713 2.10E+05 2.86E-12 0.871

723 2.00E+05 2.31E-12 0.851
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Fig. 7.    Frequency dependence of the ac conductivity at various 
temperatures.

Fig. 6.    Temperature dependence of the bulk conductivity.
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theory for conductivity relaxation in ion conductors in terms 
of a dimensionless quantity, M*, which is defined as the 
inverse of complex permittivity, e*(w). It is resolved into real 
and imaginary parts:

ω
e

= = = +′ ′′
′ 0

1
* * ,M j C Z M jM � (5)

e e
e e e e

′ ′′= =′ ′′
+ +′ ′′ ′ ′′2 2 2 2

, ,
( ) ( )

M M

where C0 = e0S/e is the vacuum capacitance of cell.
Figures 9(a) and 9(b) show the real M′ and imaginary parts 

M″ of the electrical modulus as a function of frequency at 
various temperatures. Besides, in Fig. 9(a), the value of M′ is 
very low in the low frequency region for all the temperatures 
which indicate that the electrode polarization phenomenon 
makes a negligible contribution to M* and may be ignored 
when the electric data are analyzed in this form.28,29 This 
observation may be related to a lack of restoring forces gov-
erning the mobility of charge carriers under the action of an 
induced electric field. This type of behavior supports the long-
range mobility of charge carriers. As the frequency increases 
the value of M′ reaches a maximum corresponding to M∞=  
(1/e∞) at higher frequencies for all temperatures. In addition, 
in Fig. 9(b), M″ shows a slightly asymmetric peak at each 
temperature. The peak shifts towards higher frequencies and 
their maximum increases with the increasing temperature. 
The presence of such relaxation peaks in the M″ plots indi-
cates that the samples are ionic conductors.30 The region to the 
left of the peak is where the charge carriers are mobile over 
long distances while the region to the right is where they are 
spatially confined to the potential wells. The nature of modu-
lus spectrum confirms the existence of a hopping mechanism 
in the electrical conduction of the material.31 The variation of 
M″/M″max with w/wmax at different temperatures is shown in 

Fig. 10, where wmax is the angular frequency corresponding 
to M″max. It shows the scaling behavior of the sample, where 
each M″ is scaled by M″max and each frequency axis is scaled 
by wmax. The perfect overlap of all the curves on a single mas-
ter curve for all the temperatures suggests that the relaxation 
shows the same mechanism in the entire temperature range.32

The modulus plot can be characterized by the full width at 
half height or in terms of a nonexponential decay function.33 
The stretched exponential function is defined by the empiri-
cal Kohlrausch–Williams–Watts (KWW) function34:

β

j β
t

  = − < <    
( ) exp 0 1,

t
t � (6)

where t is the characteristic relaxation time and b is the 
well-known Kohlrausch parameter, which decreases with an 
increase in the relaxation time distribution. The value of the 
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Fig. 9.    Variation of M′ (a) and M″ (b) as a function of frequency at 
various temperatures of Na0.9Ba0.1Nb0.9 (Sn0.5Ti0.5)0.1O3.
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Kohlrausch parameter b for a practical solid electrolyte is 
clearly less than 1, j(t) is related to the modulus in the angu-
lar frequency domain by the expression:

ω j
j ω

∞ −  = − − = −    ∫0

( )
1 [1 ( )].j t d t

M Ms e dt Ms
dt

� (7)

Among these functions, the Havriliak–Negami (HN) one 
has been the most extensively used in literature.35,36 The HN 
function is

α gf ω
ω t

=
+HN

1
( ) ,

[1 ( ) ]i
� (8)

where a and g are shape parameters ranging between 0 and 1. 
The Cole–Cole function corresponds to the case 0 < a < 1 
and g = 1 and the Cole–Davidson to a = 1 and 0 < g < 1. The 
Debye case is recovered again with a = g = 1. Alvarez et al. 
established that for HN function which approximately cor-
responds to the Fourier transform of df/dt, these two shape 
parameters, a and g, are related as follows37,38:

g = 1−0.812 (1−a)0.387� (9)

being the corresponding relationship between b and HN 
parameters given by

b = (ag)1/1.23.� (10)

In the electrical modulus formalism, the Havriliak–Negami 
equation has the following form:

∞
 = −′   +2 2
1

A
M M

A B
� (11)

∞
 =′′   +2 2

B
M M

A B
� (12)

where A, B, C, and Y are given as follows:

α α
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απ
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� (13)

α α
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2
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2
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α

α

απω t
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  
    Y =

  +     

( ) sin
2

arct .
1 ( ) cos

2

g � (16)

Experimental data of M′ and M″ are simultaneously fitted 
using Eqs. (11) and (12). The results are plotted in Figs. 9(a) 
and 9(b) by a solid line. As a result, a good agreement is 
observed. For each temperature, the parameters a, g, and b 
are obtained.

The values of b obtained by this formalism are very close 
to those obtained from the full width-at-half-maximum of 
the M″ spectrum (b = 1.14/FWHM). Figure 11 exhibits the b 
parameter, calculated from Eq. (10), variations with tempera-
tures. The b parameter remains in the vicinity of (0.74 ± 0.08) 
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Fig. 11.    Variation of b as a function of temperature.

0.01 0.1 1 10 100 1000

0.0

0.2

0.4

0.6

0.8

1.0

M
''/

M
'' m

ax

 608 K

Ln(ω/ω
max

)

 618 K
 628 K
 643 K
 653 K
 663 K
 673 K
 688 K
 703 K
 713 K

Fig. 10.    Scaling behavior of Im(M) of Na0.9Ba0.1Nb0.9 (Sn0.5Ti0.5)0.1O3 

ceramic. 

2150013.indd   62150013.indd   6 04-05-2021   20:34:5004-05-2021   20:34:50



A. Oueslati & A. Aydi� J. Adv. Dielect. 11, 2150013 (2021)

2150013-7

FA	 WSPC/270-JAD  2150013  ISSN: 2010-135X

when the temperature varies. This suggests that all possible 
relaxation mechanisms occurring at different frequencies 
exhibit the same thermal energy and the dynamical processes 
are temperature independent.

The imaginary part of the modulus passes through a 
maximum at wt = 1 (Fig. 1(b)), where t is the average elec-
trical field relaxation time. The variation of the relaxation 
time t with temperature follows the Arrhenius relation t = 
t0 exp(Em/kT), where t0 is the characteristic relaxation time 
and Em = (0.95 ± 0.04) is the activation energy (Fig. 12). The 
near value of activation energies obtained from the analyses 
of M″, conductivity data, and circuit equivalent confirm that 
the conductivity deduced from the impedance arcs is domi-
nated by the grain-interior conductivity, i.e., characterized by 
the hopping of the (O2−) ions in the material.39

4.  Conclusion

In this work, the purity of prepared ceramic Na0.9Ba0.1Nb0.9 
(Sn0.5Ti0.5)0.1O3 was confirmed by X-ray powder diffrac-
tion. The electrical measurements show the appearance of 
semi-circular arcs, well modeled in terms of the equivalent 
electrical circuit. Besides, Z′ and Z″ curves merge above 105 
Hz at different temperatures reveals the reduced space charge 
polarization and contribution from grain. The scaling behav-
ior of the imaginary part of the impedance implies that the 
relaxation shows the same mechanism in all the temperature 
range. The variation of ac conductivity with frequency has 
been observed to obey Jonscher’s power law dependence. 
Indeed, the KWW function and the coupling model are used 
to analyze electric modulus at various temperatures. The 
near value of activation energies obtained from the analyses 
of modulus and conductivity data confirms that the trans-
port is through ion hopping mechanism in the investigated 
material.
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