• Photonics Research
  • Vol. 9, Issue 5, 781 (2021)
Tengteng Li1、†, Qingyan Li1、†, Xin Tang1, Zhiliang Chen1, Yifan Li1, Hongliang Zhao1, Silei Wang1, Xin Ding1、2, Yating Zhang1、*, and Jianquan Yao1、3
Author Affiliations
  • 1Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2e-mail: dingxin@tju.edu.cn
  • 3e-mail: jqyao@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.416580 Cite this Article Set citation alerts
    Tengteng Li, Qingyan Li, Xin Tang, Zhiliang Chen, Yifan Li, Hongliang Zhao, Silei Wang, Xin Ding, Yating Zhang, Jianquan Yao. Environment-friendly antisolvent tert-amyl alcohol modified hybrid perovskite photodetector with high responsivity[J]. Photonics Research, 2021, 9(5): 781 Copy Citation Text show less
    References

    [1] K. J. Baeg, M. Binda, D. Natali, M. Caironi, Y. Y. Noh. Organic light detectors: Photodiodes and phototransistors. Adv. Mater., 25, 4267-4295(2013).

    [2] H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang. Nanostructured photodetectors: from ultraviolet to terahertz. Adv. Mater., 28, 403-433(2016).

    [3] P. C. Eng, S. Song, B. Ping. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength. Nanophotonics, 4, 277-302(2015).

    [4] F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

    [5] J. Li, L. Niu, Z. Zheng, F. Yan. Photosensitive graphene transistors. Adv. Mater., 26, 5239-5273(2014).

    [6] C. L. Tan, H. Mohseni. Emerging technologies for high performance infrared detectors. Nanophotonics, 7, 169-197(2018).

    [7] L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, Y. Yang. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun., 5, 5404(2014).

    [8] H. J. Haugan, S. Elhamri, F. Szmulowicz, B. Ullrich, G. J. Brown, W. C. Mitchel. Study of residual background carriers in midinfrared InAs/GaSb superlattices for uncooled detector operation. Appl. Phys. Lett., 92, 071102(2008).

    [9] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, A. Castellanos-Gomez. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev., 44, 3691-3718(2015).

    [10] A. Rogalski, J. Antoszewski, L. Faraone. Third-generation infrared photodetector arrays. J. Appl. Phys., 105, 091101(2009).

    [11] F. P. García de Arquer, A. Armin, P. Meredith, E. H. Sargent. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater., 2, 16100(2017).

    [12] C. Xie, C. K. Liu, H. L. Loi, F. Yan. Perovskite-based phototransistors and hybrid photodetectors. Adv. Funct. Mater., 30, 1903907(2019).

    [13] H. Wang, D. H. Kim. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev., 46, 5204-5236(2017).

    [14] Y. Yao, Y. Liang, V. Shrotriya, S. Xiao, L. Yu, Y. Yang. Plastic near-infrared photodetectors utilizing low band gap polymer. Adv. Mater., 19, 3979-3983(2007).

    [15] X. Zhou, D. Yang, D. Ma. Extremely low dark current, high responsivity, all-polymer photodetectors with spectral response from 300 nm to 1000 nm. Adv. Opt. Mater., 3, 1570-1576(2015).

    [16] H. Y. Chen, M. K. Lo, G. Yang, H. G. Monbouquette, Y. Yang. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nat. Nanotechnol., 3, 543-547(2008).

    [17] F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol., 7, 798-802(2012).

    [18] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E. H. Sargent. Ultrasensitive solution-cast quantum dot photodetectors. Nature, 442, 180-183(2006).

    [19] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, A. J. Heeger. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 325, 1665-1667(2009).

    [20] V. Sukhovatkin, S. Hinds, L. Brzozowski, E. H. Sargent. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science, 324, 1542-1544(2009).

    [21] D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy, 1, 16142(2016).

    [22] Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen, Y. Lin, H. Wei, Z. J. Yu, Z. Holman, J. Huang. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy, 5, 657-665(2020).

    [23] D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C. R. Grice, A. J. Cimaroli, L. Guan, R. J. Ellingson, K. Zhu, X. Zhao, R.-G. Xiong, Y. Yan. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy, 2, 17018(2017).

    [24] N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, M. Gratzel. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 358, 768-771(2017).

    [25] T. H. Han, J. W. Lee, Y. J. Choi, C. Choi, S. Tan, S. J. Lee, Y. Zhao, Y. Huang, D. Kim, Y. Yang. Surface-2D/bulk-3D heterophased perovskite nanograins for long-term-stable light-emitting diodes. Adv. Mater., 32, 1905674(2020).

    [26] Y. Shang, Y. Liao, Q. Wei, Z. Wang, B. Xiang, Y. Ke, W. Liu, Z. Ning. Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure. Sci. Adv., 5, eaaw8072(2019).

    [27] P. Liu, X. He, J. Ren, Q. Liao, J. Yao, H. Fu. Organic-inorganic hybrid perovskite nanowire laser arrays. ACS Nano, 11, 5766-5773(2017).

    [28] X. Fu, S. Jiao, Y. Jiang, L. Li, X. Wang, C. Zhu, C. Ma, H. Zhao, Z. Xu, Y. Liu, W. Huang, W. Zheng, P. Fan, F. Jiang, D. Zhang, X. Zhu, X. Wang, A. Pan. Large-scale growth of ultrathin low-dimensional perovskite nanosheets for high-detectivity photodetectors. ACS Appl. Mater. Interfaces, 12, 2884-2891(2020).

    [29] C. K. Liu, Q. Tai, N. Wang, G. Tang, H. L. Loi, F. Yan. Sn-based perovskite for highly sensitive photodetectors. Adv. Sci., 6, 1900751(2019).

    [30] C. Zuo, H. J. Bolink, H. Han, J. Huang, D. Cahen, L. Ding. Advances in perovskite solar cells. Adv. Sci., 3, 1500324(2016).

    [31] B. Saparov, D. B. Mitzi. Organic-inorganic perovskites: structural versatility for functional materials design. Chem. Rev., 116, 4558-4596(2016).

    [32] Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 10, 355-396(2015).

    [33] N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, N. G. Park. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc., 137, 8696-8699(2015).

    [34] Y. Yun, F. Wang, H. Huang, Y. Fang, S. Liu, W. Huang, Z. Cheng, Y. Liu, Y. Cao, M. Gao, L. Zhu, L. Wang, T. Qin, W. Huang. A nontoxic bifunctional (anti)solvent as digestive-ripening agent for high-performance perovskite solar cells. Adv. Mater., 32, 1907123(2020).

    [35] L. Wang, X. Wang, L.-L. Deng, S. Leng, X. Guo, C.-H. Tan, W. C. H. Choy, C.-C. Chen. The mechanism of universal green antisolvents for intermediate phase controlled high-efficiency formamidinium-based perovskite solar cells. Mater. Horiz., 7, 934-942(2020).

    [36] H. Li, Y. Xia, C. Wang, G. Wang, Y. Chen, L. Guo, D. Luo, S. Wen. High-efficiency and stable perovskite solar cells prepared using chlorobenzene/acetonitrile antisolvent. ACS Appl. Mater. Interfaces, 11, 34989-34996(2019).

    [37] F. Yang, G. Kapil, P. Zhang, Z. Hu, M. A. Kamarudin, T. Ma, S. Hayase. Dependence of acetate-based antisolvents for high humidity fabrication of CH3NH3PbI3 perovskite devices in ambient atmosphere. ACS Appl. Mater. Interfaces, 10, 16482-16489(2018).

    [38] N. Sakai, S. Pathak, H.-W. Chen, A. A. Haghighirad, S. D. Stranks, T. Miyasaka, H. J. Snaith. The mechanism of toluene-assisted crystallization of organic–inorganic perovskites for highly efficient solar cells. J. Mater. Chem. A, 4, 4464-4471(2016).

    [39] X. Xu, Z. Li, L. Zhu, H. Zheng, G. Liu, T. Hayat, A. Alsaedi, X. Zhang, Y. Huang, X. Pan. Large-grained formamidinium-based films via a 2D–3D conversion mechanism for high-performance perovskite solar cells without anti-solvent. J. Mater. Chem. A, 7, 1341-1348(2019).

    [40] M. Yin, F. Xie, H. Chen, X. Yang, F. Ye, E. Bi, Y. Wu, M. Cai, L. Han. Annealing-free perovskite films by instant crystallization for efficient solar cells. J. Mater. Chem. A, 4, 8548-8553(2016).

    [41] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, T. Wu. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun., 6, 8238(2015).

    [42] C. Liu, H. Peng, K. Wang, C. Wei, Z. Wang, X. Gong. PbS quantum dots-induced trap-assisted charge injection in perovskite photodetectors. Nano Energy, 30, 27-35(2016).

    [43] C. Liu, K. Wang, C. Yi, X. Shi, P. Du, A. W. Smith, A. Karim, X. Gong. Ultrasensitive solution-processed perovskite hybrid photodetectors. J. Mater. Chem. C, 3, 6600-6606(2015).

    [44] B. R. Sutherland, A. K. Johnston, A. H. Ip, J. Xu, V. Adinolfi, P. Kanjanaboos, E. H. Sargent. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photon., 2, 1117-1123(2015).

    [45] C. Bao, W. Zhu, J. Yang, F. Li, S. Gu, Y. Wang, T. Yu, J. Zhu, Y. Zhou, Z. Zou. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl. Mater. Interfaces, 8, 23868-23875(2016).

    [46] X. Zhang, C. Liu, G. Ren, S. Li, C. Bi, Q. Hao, H. Liu. High-switching-ratio photodetectors based on perovskite CH3NH3PbI3 nanowires. Nanomaterials, 8, 318(2018).

    [47] H. Tao, H. Wang, Y. Bai, H. Zhao, Q. Fu, Z. Ma, H. Long. Efficient photodiode-type photodetectors with perovskite thin films derived from an MAPbI3 single-crystal precursor. J. Mater. Chem. C, 8, 6228-6235(2020).

    [48] F. Yan, Z. Wei, X. Wei, Q. Lv, W. Zhu, K. Wang. Toward high-performance photodetectors based on 2D materials: strategy on methods. Small Methods, 2, 1700349(2018).

    [49] Z.-Y. Peng, J.-L. Xu, J.-Y. Zhang, X. Gao, S.-D. Wang. Solution-processed high-performance hybrid photodetectors enhanced by perovskite/MoS2 bulk heterojunction. Adv. Mater. Interfaces, 5, 1800505(2018).

    [50] C. Xie, C. Mak, X. Tao, F. Yan. Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater., 27, 1603886(2017).

    CLP Journals

    [1] Shunfa Gong, Ruirui Wu, Sen Yang, Lifang Wu, Minmin Zhang, Qiuju Han, Wenzhi Wu. Tuning the luminous properties and optical thermometry of Cs2SnCl6 phosphor microcrystals via Bi and Sb codoping[J]. Photonics Research, 2021, 9(11): 2182

    Tengteng Li, Qingyan Li, Xin Tang, Zhiliang Chen, Yifan Li, Hongliang Zhao, Silei Wang, Xin Ding, Yating Zhang, Jianquan Yao. Environment-friendly antisolvent tert-amyl alcohol modified hybrid perovskite photodetector with high responsivity[J]. Photonics Research, 2021, 9(5): 781
    Download Citation