• Journal of Inorganic Materials
  • Vol. 36, Issue 12, 1277 (2021)
Hao LI*, Zhihong TANG, Shangjun ZHUO, and Rong QIAN
DOI: 10.15541/jim20210120 Cite this Article
Hao LI, Zhihong TANG, Shangjun ZHUO, Rong QIAN. High Performance of Room-temperature NO2 Gas Sensor Based on ZIF8/rGO[J]. Journal of Inorganic Materials, 2021, 36(12): 1277 Copy Citation Text show less
References

[1] J WU, X WU Z, J DING H et al. Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sensors & Actuators: B Chemical, 305, 127445(2020).

[2] L YIN M, T WANG Y, M YU L et al. Ag nanoparticles-modified Fe2O3@MoS2 core-shell micro/nanocomposites for high-performance NO2 gas detection at low temperature. Journal of Alloys and Compounds, 829, 154471(2020). https://linkinghub.elsevier.com/retrieve/pii/S0925838820308343

[3] L HE, Y ZHANG W, Y ZHANG X et al. 3D flower-like NiCo-LDH composites for a high-performance NO2 gas sensor at room temperature. Colloids and Surfaces A, 603, 125142(2020). https://linkinghub.elsevier.com/retrieve/pii/S0927775720307354

[4] D WANG X, O WOLFBEIS S. Fiber-optic chemical sensors and biosensors (2008-2012). Analytical Chemistry, 85, 487-508(2013). https://pubs.acs.org/doi/10.1021/ac303159b

[5] C CHANG S, J STETTER D. Electrochemical NO2 gas sensors: model and mechanism for the electroreduction of NO2. Electroanalysis, 2, 359-365(1990). http://doi.wiley.com/10.1002/%28ISSN%291521-4109

[6] F ZHOU P, B SHEN Y, W LU et al. Highly selective NO2 chemiresistive gas sensor based on hierarchical In2O3 microflowers grown on clinoptilolite substrates. Journal of Alloys and Compounds, 828, 154395(2020). https://linkinghub.elsevier.com/retrieve/pii/S0925838820307581

[7] C WU Y, N JOSHI, L ZHAO S et al. NO2 gas sensors based on CVD tungsten diselenide monolayer. Applied Surface Science, 529, 147110(2020). https://linkinghub.elsevier.com/retrieve/pii/S0169433220318675

[8] S KIRUBA M, J ANN S, K PRAJWAL et al. Sputter deposited p-NiO/n-SnO2 porous thin film heterojunction based NO2 sensor with high selectivity and fast response. Sensors & Actuators: B Chemical, 310, 127830(2020).

[9] W ZENG W, Z LIU Y, J MEI et al. Hierarchical SnO2-Sn3O4 heterostructural gas sensor with high sensitivity and selectivity to NO2. Sensors & Actuators: B Chemical, 301, 127010(2019).

[10] B ZHANG, M CHENG, N LIU G et al. Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. Sensors & Actuators: B Chemical, 263, 387-399(2018).

[11] W WEI, S CHEN R, Z QI W et al. Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO2 E-textile gas sensor. ACS Sensors, 4, 2809-2818(2019). https://pubs.acs.org/doi/10.1021/acssensors.9b01509

[12] F NIU, W SHAO Z, H GAO et al. Si-doped graphene nanosheets for NOx gas sensing. Sensors & Actuators: B Chemical, 328, 129005(2021).

[13] J WU, K TAO, Y GUO Y et al. A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Advanced Science, 4, 1600319(2017). https://onlinelibrary.wiley.com/doi/10.1002/advs.201600319

[14] S LIU, B YU, H ZHANG et al. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sensors & Actuators: B Chemical, 202, 272-278(2014).

[15] W LI W, H GUO J, L CAI et al. UV light irradiation enhanced gas sensor selectivity of NO2 and SO2 using rGO functionalized with hollow SnO2 nanofibers. Sensors & Actuators: B Chemical, 290, 443-452(2019).

[16] D MATATAGUIA, S VIDALA A, I GRACIA et al. Chemoresistive gas sensor based on ZIF-8/ZIF-67 nanocrystals. Sensors & Actuators: B Chemical, 274, 601-608(2018).

[17] N JAFARI, S ZEINALI. Highly rapid and sensitive formaldehyde detection at room temperature using a ZIF-8/MWCNT nanocomposite. ACS Omega, 5, 4395-4402(2020). https://pubs.acs.org/doi/10.1021/acsomega.9b03124

[18] P FENG S, H JIA X, J YANG et al. One-pot synthesis of core-shell ZIF-8@ZnO porous nanospheres with improved ethanol gas sensing. Journal of Materials Science: Materials in Electronics, 31, 22534-22545(2020). https://doi.org/10.1007/s10854-020-04764-y

[19] J ZHAO J, X QUAN, S CHEN et al. Cobalt nanoparticles encapsulated in porous carbons derived from core-shell ZIF67@ZIF8 as efficient electrocatalysts for oxygen evolution reaction. ACS Applied Materials & Interfaces, 9, 28685-28694(2017).

[20] Z LI, Y ZHANG, H ZHANG et al. Superior NO2 sensing of MOF-derived indium-doped ZnO porous hollow cages. ACS Applied Materials & Interfaces, 12, 37489-37498(2020).

[21] F MA D, J SU Y, T TIAN et al. Multichannel room-temperature gas sensors based on magnetic field-aligned 3D Fe3O4@SiO2@reduced graphene oxide spheres. ACS Applied Materials & Interfaces, 12, 37418-37426(2020).

[22] J LI, J LU Y, Q YE et al. Carbon nanotube sensors for gas and organic vapor detection. Nano Letters, 3, 929-922(2003). https://pubs.acs.org/doi/10.1021/nl034220x

[23] N BARSAN, U WEIMAR. Conduction model of metal oxide gas sensors. Journal of Electroceramics, 7, 143-167(2001). http://link.springer.com/10.1023/A:1014405811371

[24] S LIU Y, R WANG, T ZHANG et al. Zeolitic imidazolate framework-8 (ZIF-8)-coated In2O3 nanofibers as an efficient sensing material for ppb-level NO2 detection. Journal of Colloid and Interface Science, 541, 249-257(2019). https://linkinghub.elsevier.com/retrieve/pii/S0021979719300645

[25] H ZHANG, L YU, Q LI et al. Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing. Sensors & Actuators: B Chemical, 241, 109-115(2017).

Hao LI, Zhihong TANG, Shangjun ZHUO, Rong QIAN. High Performance of Room-temperature NO2 Gas Sensor Based on ZIF8/rGO[J]. Journal of Inorganic Materials, 2021, 36(12): 1277
Download Citation