• Laser & Optoelectronics Progress
  • Vol. 58, Issue 18, 1811001 (2021)
Fei Liu1、2、3、**, Xiaoqin Wu1、2, Lin Zhao1、2, Jingbo Duan1、2, Jiangyong Li1, and Xiaopeng Shao1、2、3、*
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
  • 2Xi'an Key Laboratory of Computational Imaging, Xi'an, Shaanxi 710071, China
  • 3Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi 710071, China
  • show less
    DOI: 10.3788/LOP202158.1811001 Cite this Article Set citation alerts
    Fei Liu, Xiaoqin Wu, Lin Zhao, Jingbo Duan, Jiangyong Li, Xiaopeng Shao. Research Progress of Wide-Field and High-Resolution Computational Optical Imaging System[J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811001 Copy Citation Text show less
    References

    [1] Cossairt O, Nayar S. Spectral focal sweep: extended depth of field from chromatic aberrations[C]. //2010 IEEE International Conference on Computational Photography (ICCP), March 29-30, 2010, Cambridge, MA, USA, 1-8(2010).

    [2] Wang Y Z. Fisheye lens optics[M](2006).

    [3] Schroeder D J. Astronomical optics[M]. 2nd ed(2000).

    [4] Lukac R. Computational photography: methods and applications[M](2016).

    [5] Lohmann A W. Scaling laws for lens systems[J]. Applied Optics, 28, 4996-4998(1989).

    [6] Cossairt O S, Miau D, Nayar S K. Gigapixel computational imaging[C]. //2011 IEEE International Conference on Computational Photography (ICCP), April 8-10, 2011, Pittsburgh, PA, USA., 1-8(2011).

    [7] Kopf J, Uyttendaele M, Deussen O et al. Capturing and viewing gigapixel images[J]. ACM Transactions on Graphics, 26, 93(2007).

    [9] Sargent R, Bartley C, Dille P et al. Timelapse GigaPan: Capturing, sharing, and exploring timelapse gigapixel imagery[EB/OL]. [2021-05-15]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.229.3933

    [10] Ben-Ezra M. Adigital gigapixel large-format tile-scan camera[J]. IEEE Computer Graphics and Applications, 31, 49-61(2011).

    [11] Muraki Y, Sumi T, Abe F et al. Search for machos by the MOA collaboration[J]. Progress of Theoretical Physics Supplement, 133, 233-246(1999).

    [12] Sako T, Sekiguchi T, Sasaki M et al. MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand[J]. Experimental Astronomy, 22, 51-66(2008).

    [13] Kahn S M, Kurita N, Gilmore K et al. Design and development of the 3.2 gigapixel camera for the large synoptic survey telescope[J]. Proceedings of SPIE, 7735, 77350J(2010).

    [14] Ivezić Ž, Connolly A J, Jurić M. Everything we’d like to do with LSST data, but we don’t know (yet) how[J]. Proceedings of the International Astronomical Union, 12, 93-102(2016).

    [15] Ivezić Ž, Kahn S M, Tyson J A et al. LSST: from science drivers to reference design and anticipated data products[EB/OL]. (2008-05-15)[2021-05-15]. https://arxiv.org/abs/0805.2366

    [16] Neill D, Angeli G, Claver C et al. Overview of the LSST active optics system[J]. Proceedings of SPIE, 9150, 91500G(2014).

    [17] Souchon J P, Paparoditis N, Martin O et al. Is there an ideal digital aerial camera[EB/OL]. [2021-05-15]. https://www.ixueshu.com/document/1a062edd55ae9e81318947a18e7f9386.html

    [18] Ebbets D, Argabright V, Stober J et al. In-flight photometric performance of the 96 Mpx focal plane array assembly for NASA’s Kepler exoplanet mission[J]. Proceedings of SPIE, 8146, 81460H(2011).

    [19] Ebbets D, Atcheson P, Stewart C et al. Optical performance of the 100-sq deg field-of-view telescope for NASA’s Kepler exoplanet mission[J]. Proceedings of SPIE, 8146, 81460G(2011).

    [20] Leininger B, Edwards J, Antoniades J et al. Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS)[J]. Proceedings of SPIE, 6981, 69810H(2008).

    [21] Li F Q, Zhang X H, Cai W J et al. Parameter calculation of splitting mirrors in optical-butting focal plane[J]. Acta Optica Sinica, 40, 1308001(2020).

    [22] Brady D J, Hagen N. Multiscale lens design[J]. Optics Express, 17, 10659-10674(2009).

    [23] Son H S, Marks D L, Tremblay E et al. A multiscale, wide field, gigapixel camera[C]. //Imaging Systems and Applications 2011, July 10-14, 2011, Toronto, Canada, JTuE2(2011).

    [24] Son H S, Marks D L, Hahn J et al. Design of a spherical focal surface using close-packed relay optics[J]. Optics Express, 19, 16132-16138(2011).

    [25] Marks D L, Brady D J. Gigagon: a monocentric lens design imaging 40 gigapixels[C]. //Imaging Systems 2010, June 7-8, 2010, Tucson, Arizona, United States, ITuC2(2010).

    [26] Marks D L, Tremblay E J, Ford J E et al. Microcamera aperture scale in monocentric gigapixel cameras[J]. Applied Optics, 50, 5824-5833(2011).

    [27] Marks D L, Brady D J. Close-up imaging using microcamera arrays for focal plane synthesis[J]. Optical Engineering, 50, 033205(2011).

    [28] Tremblay E J, Marks D L, Brady D J et al. Design and scaling of monocentric multiscale imagers[J]. Applied Optics, 51, 4691-4702(2012).

    [29] Kittle D S, Marks D L, Son H S et al. A testbed for wide-field, high-resolution, gigapixel-class cameras[J]. The Review of Scientific Instruments, 84, 053107(2013).

    [30] Pang W B, Brady D J. Galilean monocentric multiscale optical systems[J]. Optics Express, 25, 20332-20339(2017).

    [31] Golish D R, Vera E M, Kelly K J et al. Development of a scalable image formation pipeline for multiscale gigapixel photography[J]. Optics Express, 20, 22048-22062(2012).

    [32] Marks D L, Son H S, Kim J et al. Engineering a gigapixel monocentric multiscale camera[J]. Optical Engineering, 51, 083202(2012).

    [33] Brady D J, Gehm M E, Stack R A et al. Multiscale gigapixel photography[J]. Nature, 486, 386-389(2012).

    [34] Son H S, Johnson A, Stack R A et al. Optomechanical design of multiscale gigapixel digital camera[J]. Applied Optics, 52, 1541-1549(2013).

    [35] Youn S H, Son H S, Marks D L et al. Optical performance test and validation of microcameras in multiscale, gigapixel imagers[J]. Optics Express, 22, 3712-3723(2014).

    [36] Nakamura T, Kittle D S, Youn S H et al. Autofocus for a multiscale gigapixel camera[J]. Applied Optics, 52, 8146-8153(2013).

    [37] Marks D L, Llull P R, Phillips Z et al. Characterization of the AWARE 10 two-gigapixel wide-field-of-view visible imager[J]. Applied Optics, 53, C54-C63(2014).

    [38] Qi J K, Zhou F, Yao G et al. A newsuper-large field of view and small distortion optical system[J]. Spacecraft Recovery & Remote Sensing, 34, 30-35(2013).

    [39] Zhuang X X, Ruan N J, He J P et al. Multiscale wide field-of-view gigapixel imaging technique[J]. Space Return & Remote Sensing, 35, 1-8(2014).

    [40] Feng Y C. Research and simulation of wide-area high-resolution camera based on computational imaging[D](2015).

    [41] Wu Y S. Research on wide FOV high resolution earth observation system based on multi-scale stitching imaging[D](2016).

    [42] Wu J, Xiong B, Lin X et al. Snapshot hyperspectral volumetric microscopy[J]. Scientific Reports, 6, 24624(2016).

    [43] Chen T. Sphere/plane multi-scale & multi-aperture optical imaging systems[D](2016).

    [44] Xue L. Design of wide field of view high resolution multi-scale multi-aperture computing imaging system[D](2018).

    [45] Xu F G. Research on design of wide-field and high-resolution imaging optical system[D](2017).

    [46] Du J. Research on concentric wide field of view high resolution imaging method[D](2014).

    [47] Liu F, Wei Y Z, Han P L et al. Design of multi-scale wide-area high-resolution computational imaging system based on concentric spherical lens[J]. Acta Physica Sinica, 68, 084201(2019).

    [48] Chen X X. Development of a monocentric multiscale imaging system with sparse subcamera array[D](2017).

    [49] Lu W W, Chen S Y, Zhai D D et al. Biomimetic hybrid fisheye/compound eye imaging system with wide view and high resolution[J]. Journal of Applied Optics, 40, 311-315(2019).

    [50] Lu W W, Chen S Y, Xiong Y P et al. A single ball lens-based hybrid biomimetic fish eye/compound eye imaging system[J]. Optics Communications, 480, 126458(2021).

    [51] Li J H, Tan F L, Zeng C X et al. Optical system design of wide-coverage and high-resolution airborne camera[J]. Acta Optica Sinica, 41, 0222001(2021).

    [52] Li J H, Tan F L, Zeng C X et al. Design of optical system of UAV-borne ultra-low altitude and wide coverage remote sensing camera[J]. Acta Optica Sinica, 41, 1422001(2021).

    [53] Li J Y, Feng W X, Liu F et al. Design of airborne multi-scale wide-field-of-view and high-resolution imaging system[J]. Acta Optica Sinica, 41, 0208002(2021).

    [54] Shen Y[D]. Research on super large field of view optical imaging technology based on concentric lens, 2019.

    [55] Shen Y, Wang H, Wang C C et al. Optical design of a distributed zoom concentric multiscale meteorological instrument[J]. Applied Optics, 57, 5168-5179(2018).

    [56] Liu F, Liu J W, Shao X P. Design of high integration and miniaturization concentric multiscale optical system[J]. Optics and Precision Engineering, 28, 1275-1282(2020).

    [57] Yang W, Liu J W, Han P L et al. Design of an infrared zoom imaging system based on concentric spherical lens with wide FOV and high resolution[J]. Journal of Infrared and Millimeter Waves, 38, 805-812(2019).

    [58] Wu X X, Wang X R, Yuan Y et al. Design of sub-imaging system based on monocentric multiscale dual resolution imaging[J]. Optics and Precision Engineering, 24, 2644-2650(2016).

    [59] Wu X X. Design and development of wide FOV high resolution optical system based on multisacle imaging principle[D](2018).

    [60] Marks D L, Son H S, Phillips Z F et al. Multiscale camera objective with sub 2 arcsec resolution, 36 degree field-of-view[C]. //Computational Optical Sensing and Imaging 2014, June 22-26, 2014, Kohala Coast, Hawaii, United States, CTh1C, 3(2014).

    [61] Llull P, Bange L, Phillips Z F et al. Characterization of the AWARE 40 wide-field-of-view visible imager[J]. Optica, 2, 1086-1089(2015).

    [62] Afshari H, Popovic V, Tasci T et al. A spherical multi-camera system with real-time omnidirectional video acquisition capability[J]. IEEE Transactions on Consumer Electronics, 58, 1110-1118(2012).

    [63] Afshari H, Jacques L, Bagnato L et al. The PANOPTIC camera: a plenoptic sensor with real-time omnidirectional capability[J]. Journal of Signal Processing Systems, 70, 305-328(2013).

    [64] Popovic V, Afshari H, Schmid A et al. Real-time implementation of Gaussian image blending in a spherical light field camera[C]. //2013 IEEE International Conference on Industrial Technology (ICIT), February 25-28, 2013, Cape Town, South Africa., 1173-1178(2013).

    [65] Popovic V, Seyid K, Akin A et al. Image blending in a high frame rate FPGA-based multi-camera system[J]. Journal of Signal Processing Systems, 76, 169-184(2014).

    [66] Akin A, Cogal O, Seyid K et al. Hemispherical multiple camera system for high resolution omni-directional light field imaging[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3, 137-144(2013).

    [67] Cogal O, Akin A, Seyid K et al. A new omni-directional multi-camera system for high resolution surveillance[J]. Proceedings of SPIE, 9120, 91200N(2014).

    [68] Popovic V. Real-time computational gigapixel multi-camera systems[D](2016).

    [69] Cogal O, Leblebici Y. An insect eye inspired miniaturized multi-camera system for endoscopic imaging[J]. IEEE Transactions on Biomedical Circuits and Systems, 11, 212-224(2017).

    [70] Shi L F. Research and experiment on imaging structure of wide-area artificial compound eye[D](2014).

    [71] Cao A, Shi L F, Deng Q L et al. Structural design and image processing of a spherical artificial compound eye[J]. Optik, 126, 3099-3103(2015).

    [72] Lu Y. Research on the key technology of large field of view and ultra-high resolution camera[D](2016).

    [73] Wang Y W, Cai B L, Lu Y et al. Optical system design of artificial compound eye based on field stitching[J]. Microwave and Optical Technology Letters, 59, 1277-1279(2017).

    [74] Wang Y W. Research on key technologies of bionic compound eye for panoramic stereo imaging[D](2017).

    [75] Law N M, Fors O, Wulfken P et al. The Evryscope: the first full-sky gigapixel-scale telescope[J]. Proceedings of SPIE, 9145, 91450Z(2014).

    [76] Law N M, Fors O, Ratzloff J et al. Evryscope science: exploring the potential of all-sky gigapixel-scale telescopes[J]. Publications of the Astronomical Society of the Pacific, 127, 234-249(2015).

    [77] Law N M, Fors O, Ratzloff J et al. The Evryscope: design and performance of the first full-sky gigapixel-scale telescope[J]. Proceedings of SPIE, 9906, 99061M(2016).

    [78] Fu Y G, Zhao Y, Liu Z Y et al. Design of bionic compound eye optical system based on field of view stitching method[J]. Chinese Journal of Scientific Instrument, 36, 422-429(2015).

    [79] Fu Y G, Zhao Y, Liu Z Y et al. Design of compact bionic compound eye optical system used for target identification[J]. Infrared and Laser Engineering, 46, 0602001(2017).

    [80] Wang Y Y. Design and micromachining technology of surface bionic compound eye imaging system[D](2019).

    [81] Wang Y Y, Shi C Y, Xu H R et al. A compact bionic compound eye camera for imaging in a large field of view[J]. Optics & Laser Technology, 135, 106705(2021).

    [82] Shao X P, Liu F, Li W et al. Latest progress in computational imaging technology and application[J]. Laser & Optoelectronics Progress, 57, 020001(2020).

    [83] Qiu S, Xue J A, Wang X et al. A Large-field-of-view compact bionic compound eyes imaging system research[J]. Navigation Positioning and Timing, 7, 11-18(2020).

    [84] Xue J A, Qiu S, Wang X et al. A compact visible bionic compound eyes system based on micro-surface fiber faceplate[J]. Proceedings of SPIE, 11438, 114380B(2020).

    [85] Xu M. Design and experimental study on dual-mode compound eye imaging system[D], 2017.

    [86] Xu M, Wang Y Q, Wang C T et al. Research on dual-mode compound eye imaging system[J]. Laser & Optoelectronics Progress, 54, 091102(2017).

    [87] Wang Z H, Cao J, Hao Q et al. Combining compound eyes and human eye: a hybrid bionic imaging method for FOV extension and foveated vision[J]. Proceedings of SPIE, 11053, 110531I(2019).

    [88] Cao J, Cui H, Meng L T et al. Multi-resolution imaging with camera arrays on curved surface[J]. Acta Photonica Sinica, 49, 0411003(2020).

    [89] Cui H, Hao Q, Cao J et al. Curved retina-like camera array imaging system with adjustable super-resolution fovea[J]. Applied Optics, 60, 1535-1543(2021).

    Fei Liu, Xiaoqin Wu, Lin Zhao, Jingbo Duan, Jiangyong Li, Xiaopeng Shao. Research Progress of Wide-Field and High-Resolution Computational Optical Imaging System[J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811001
    Download Citation