• Journal of Innovative Optical Health Sciences
  • Vol. 2, Issue 1, 27 (2009)
ADAM M. LARSON1, ANTHONY LEE1, PO-FENG LEE1, KAYLA J. BAYLESS2, and ALVIN T. YEH1、*
Author Affiliations
  • 1Department of Biomedical Engineering Texas A&M University College Station, Texas, USA
  • 2Department of Molecular and Cellular Medicine Texas A&M Health Science Center College Station, Texas, USA
  • show less
    DOI: Cite this Article
    ADAM M. LARSON, ANTHONY LEE, PO-FENG LEE, KAYLA J. BAYLESS, ALVIN T. YEH. ULTRASHORT PULSE MULTISPECTRAL NON-LINEAR OPTICAL MICROSCOPY[J]. Journal of Innovative Optical Health Sciences, 2009, 2(1): 27 Copy Citation Text show less
    References

    [1] Du, W., Wang, Y., Luo, Q. and Liu, B. F., “Optical molecular imaging for systems biology: from molecule to organism,” Anal. Bioanal. Chem. 386, 444–457 (2006).

    [2] Stoller, P., Reiser, K. M., Celliers, P. M. and Rubenchik, A. M., “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82, 3330–3342 (2002).

    [3] Williams, R. M., Zipfel, W. R. and Webb, W. W., “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).

    [4] Campagnola, P. J., Wei, M.-d., Lewis, A. and Loew, L.M., “High-resolution non-linear optical imaging of live cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999).

    [5] Boulesteix, T., Beaurepaire, E., Sauviat, M. P. and Schanne-Klein, M. C., “Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy,” Opt. Lett. 29, 2031–2033 (2004).

    [6] Plotnikov, S. V., Millard, A. C., Campagnola, P. J. andMohler,W. A., “Characterization of the myosinbased source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).

    [7] Piston, D. W., Masters, B. R. and Webb, W. W., “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” J. Microsc. 178, 20–27 (1995).

    [8] Masters, B. R., So, P. T. and Gratton, E., “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).

    [9] Huang, S., Heikal, A. A. and Webb, W. W., “Twophoton fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811– 2825 (2002).

    [10] Rocheleau, J. V., Head, W. S. and Piston, D. W., “Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response,” J. Biol. Chem. 279, 31780–31787 (2004).

    [11] Wu, Y. and Qu, J. Y., “Two-photon autofluorescence spectroscopy and second-harmonic generation of epithelial tissue,” Opt. Lett. 30, 3045–3047 (2005).

    [12] Zoumi, A., Yeh, A. and Tromberg, B. J., “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).

    [13] Yeh, A. T., Nassif, N., Zoumi, A. and Tromberg, B. J., “Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence,” Opt. Lett. 27, 2082–2084 (2002).

    [14] Konig, K., “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).

    [15] Konig, K., Schenke-Layland, K., Riemann, I. and Stock, U. A., “Multiphoton autofluorescence imaging of intratissue elastic fibers,” Biomaterials 26, 495–500 (2005).

    [16] Friedl, P., “Dynamic imaging of cellular interactions with extracellular matrix,” Histochem. Cell Biol. 122, 183–190 (2004).

    [17] Yeh, A. T., Gibbs, H., Hu, J.-J. and Larson, A. M., “Advances in non-linear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. B Rev. 14, 119–131 (2008).

    [18] Fuller, C. E.,Wang, H., Zhang,W., Fuller, G. N. and Perry, A., “High-throughput molecular profiling of high-grade astrocytomas: the utility of fluorescence in situ hybridization on tissue microarrays (TMAFISH),” J. Neuropathol. Exp. Neurol. 61, 1078–1084 (2002).

    [19] Gross, S. and Piwnica-Worms, D., “Spying on cancer: molecular imaging in vivo with genetically encoded reporters,” Cancer Cell 7, 5–15 (2005).

    [20] Kumar, S. and Richards-Kortum, R., “Optical molecular imaging agents for cancer diagnostics and therapeutics,” Nanomed. 1, 23–30 (2006).

    [21] Gao, X. and Nie, S., “Molecular profiling of single cells and tissue specimens with quantum dots,” Trends. Biotechnol. 21, 371–373 (2003).

    [22] Bayless, K. J. and Davis, G. E., “Sphingosine- 1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in threedimensional collagen and fibrin matrices,” Biochem. Biophys. Res. Commun. 312, 903–913 (2003).

    [23] Lee, P.-F., Yeh, A. T. and Bayless, K. J., “Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices,” Exp. Cell Res. (forthcoming) (2008).

    [24] Larson, A. M. and Yeh, A. T., “Ex vivo characterization of sub-10-fs pulses,” Opt. Lett. 31, 1681–1683 (2006).

    [25] Xi, P. Andegeko, Y., Weisel, L. R., Lozovoy, V. V. and Dantus, M., “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).

    [26] Meshulach, D. and Silberberg, Y., “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).

    [27] Ogilvie, J. P., Kubarych, K. J., Alexandrou, A. and Joffre, M., “Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control,” Opt. Lett. 30, 911–913 (2005).

    [28] Meshulach, D. and Silberberg, Y., “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A. 60, 1287– 1292 (1999).

    [29] Walowicz, K. A., Pastirk, I., Lozovoy, V. V. and Dantus, M., “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).

    [30] Pang, S., Yeh, A. T., Wang, C. and Meissner, K. E., “Beyond 1/Tp limit: two-photon excited fluorescence using pulses as short as sub-10-fs,” (forthcoming) (2008).

    [31] S.-C., Su, Mendoza, E. A., Kwak, H.-I. and Bayless, K. J., “Molecular profile of endothelial invasion of three-dimensional collagen matrices: insights into angiogenic sprout induction in wound healing,” Am. J. Physiol. Cell Physiol. (forthcoming) (2008).

    [32] Yeh, A. T., Kao, B. S., Jung, W. G., Chen, Z. P., Nelson, J. S. and Tromberg, B. J., “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skinequivalent tissue model,” J. Biomed. Opt. 9, 248– 253 (2004).

    [33] Lansford, R., Bearman, G. and Fraser, S. E., “Resolution of multiple green fluorescent protein color variants and dyes using two-photonmicroscopy and imaging spectroscopy,” J. Biomed. Opt. 6, 311– 318 (2001).

    [34] Dickinson, M. E., Simbuerger, E., Zimmerman, B., Waters, C. W. and Fraser, S. E., “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8, 329–338 (2003).

    [35] Buehler, C., Kim, K. H., Greuter, U., Schlumpf, N. and So, P. T. C., “Single-photon counting multicolor multiphoton fluorescence microscope,” J. Fluoresc. 15, 41–51 (2005).

    [36] Palero, J. A., de Bruijn, H. S., van der Ploegvan den Heuvel, A., Sterenborg, H. J. C. M. and Gerritsen, H. C., “In vivo non-linear spectral imaging in mouse skin,” Opt. Express 14, 4395–4402 (2006).

    [37] Ogilvie, J. P., Debarre, D., Solinas, X., Martin, J.-L., Beaurepaire, E. and Joffre, M., “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express 14, 759–766 (2006).

    [38] Radosevich, A. J., Bouchard, M. B., Burgess, S. A., Chen, B. R. and Hillman, E. M. C., “Hyperspectral in vivo two-photon microscopy of intrinsic contrast,” Opt. Lett. 33, 2164–2166 (2008).

    [39] Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., Sanes, J. R. and Lichtman, J. W., “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450, 56–61 (2007).

    ADAM M. LARSON, ANTHONY LEE, PO-FENG LEE, KAYLA J. BAYLESS, ALVIN T. YEH. ULTRASHORT PULSE MULTISPECTRAL NON-LINEAR OPTICAL MICROSCOPY[J]. Journal of Innovative Optical Health Sciences, 2009, 2(1): 27
    Download Citation