• Photonics Research
  • Vol. 7, Issue 6, 615 (2019)
C. Lacava1、*, T. Dominguez Bucio1, A. Z. Khokhar1, P. Horak1, Y. Jung1, F. Y. Gardes1, D. J. Richardson1, P. Petropoulos1, and F. Parmigiani1、2
Author Affiliations
  • 1Optoelectronics Research Centre, University of Southampton, SO17 1BJ, Southampton, UK
  • 2Currently at Microsoft Research UK, CB1 2FB, Cambridge, UK
  • show less
    DOI: 10.1364/PRJ.7.000615 Cite this Article Set citation alerts
    C. Lacava, T. Dominguez Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, F. Parmigiani. Intermodal frequency generation in silicon-rich silicon nitride waveguides[J]. Photonics Research, 2019, 7(6): 615 Copy Citation Text show less
    References

    [1] G. P. Agrawal. Nonlinear Fiber Optics(2013).

    [2] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta. Broad-band optical parametric gain on a silicon photonic chip. Nature, 441, 960-963(2006).

    [3] S. Zlatanovic, J. Park, S. Moro, J. Boggio. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nat. Photonics, 4, 561-564(2010).

    [4] F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, D. J. Richardson. All-optical mode and wavelength converter based on parametric processes in a three-mode fiber. Opt. Express, 25, 33602-33609(2017).

    [5] J. Demas, G. Prabhakar, T. He, S. Ramachandran, S. Ramachandran. Broadband and wideband parametric gain via intermodal four-wave mixing in optical fiber. Conference on Lasers and Electro-Optics, SM3M.1(2017).

    [6] R. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle. Experimental investigation of inter-modal four-wave mixing in few-mode fibers. IEEE Photon. Technol. Lett., 25, 539-542(2013).

    [7] C. Lacava, M. A. Ettabib, G. Sharp, Y. Jung, P. Petropoulos, D. J. Richardson. Silicon photonics wavelength converter based on inter-modal four wave mixing Bragg scattering. 15th International Conference on Group IV Photonics (GFP), 99-100(2018).

    [8] F. Poletti, P. Horak. Description of ultrashort pulse propagation in multimode optical fibers. J. Opt. Soc. Am. B, 25, 1645-1654(2008).

    [9] A. B. Kalifa, A. B. Salem, R. Cherif. Multimode supercontinuum generation in As2S3 chalcogenide photonic crystal fiber. Frontier in Optics, JTu2A.18(2018).

    [10] Z. S. Ezhaveh, M. Eftekhar, J. A. Lopez, M. Kolsik, H. L. Aviles, F. Wise, D. Christodoulides, R. A. Correa. Blue-enhaced supercontinuum generation in a graded-index fluorine-doped multimode fiber. Optical Fiber Communication Conference, Th3D.2(2018).

    [11] R. Dupiol, K. Krupa, A. Tonello, M. Fabert, D. Modotto, S. Wabnitz, G. Millot, V. Couderc. Interplay of Kerr and Raman beam cleaning with a multimode microstructure fiber. Opt. Lett., 43, 587-590(2018).

    [12] J. Demas, L. Rishøj, X. Liu, G. Prabhakar, S. Ramachandran. High-power, wavelength-tunable NIR all-fiber lasers via intermodal four-wave mixing. Conference on Lasers and Electro-Optics, JTh5A.8(2017).

    [13] L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, S. Ramachandran. High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities. Conference on Lasers and Electro-Optics, CTu3M.6(2012).

    [14] R. Guenard, K. Krupa, R. Dupiol, M. Fabert, A. Bendahmane, V. Kermene, A. Desfarges-Berthelemot, J. L. Auguste, A. Tonello, A. Barthélémy, G. Millot, S. Wabnitz, V. Couderc. Kerr self-cleaning of pulsed beam in an ytterbium doped multimode fiber. Opt. Express, 25, 4783-4792(2017).

    [15] Y. Ding, J. Xu, H. Ou, C. Peucheret. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide. Opt. Express, 22, 127-135(2014).

    [16] S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, F. Parmigiani. Inter-modal four-wave mixing study in a two-mode fiber. Opt. Express, 24, 30338-30349(2016).

    [17] M. Guasoni, F. Parmigiani, D. J. Richardson. Novel fiber design for wideband conversion and amplification in multimode fibers. European Conference on Optical Communication(2017).

    [18] O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, F. Parmigiani. Polarization-insensitive four-wave-mixing-based wavelength conversion in few-mode optical fibers. J. Lightwave Technol., 36, 3678-3683(2018).

    [19] S. Signorini, M. Mancinelli, M. Bernard, M. Ghulinyan, G. Pucker, L. Pavesi. Broad wavelength generation and conversion with multi modal four wave mixing in silicon waveguides. Group IV Photonics, 59-60(2017).

    [20] R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, G. Millot. Far-detuned cascaded intermodal four-wave mixing in a multimode fiber. Opt. Lett., 42, 1293-1296(2017).

    [21] J. Yuan, Z. Kang, X. Zhang, X. Sang, B. Yan, F. Li, K. Wang, C. Yu, H. Y. Tam, P. K. A. Wai. Experimental demonstration of intermodal four-wave mixing by femtosecond pump pulses at 1550  nm. J. Lightwave Technol., 35, 2385-2390(2017).

    [22] C. Lacava, S. Stankovic, A. Khokhar, T. Bucio, F. Gardes, G. Reed, D. Richardson, P. Petropoulos. Si-rich silicon nitride for nonlinear signal processing applications. Sci. Rep., 7, 22(2017).

    [23] K. Uesaka, K. K.-Y. Wong, M. E. Marhic, L. G. Kazovsky. Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments. IEEE J. Sel. Top. Quantum Electron., 8, 560-568(2002).

    [24] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, Y. Okawachi, A. L. Gaeta. Tailored anomalous group-velocity dispersion in silicon waveguides. Opt. Express, 14, 4357-4362(2006).

    [25] F. Parmigiani, M. Guasoni, O. F. Anjum, P. Horak, Y. Jung, L. Gruner-Nielsen, P. Petropoulos, D. J. Richardson. Polarization insensitive wavelength conversion in a few mode fibre. European Conference on Optical Communication, W2F2(2017).

    [26] J. B. Christensen, J. G. Koefoed, B. A. Bell, C. J. McKinstrie, K. Rottwitt. Shape-preserving and unidirectional frequency conversion using four-wave mixing Bragg scattering. Opt. Express, 26, 17145-17157(2018).

    [27] B. Bell, C. Xiong, D. Marpaung, C. McKinstrie, B. Eggleton. Uni-directional wavelength conversion in silicon using four-wave mixing driven by cross-polarized pumps. Opt. Lett., 42, 1668-1671(2017).

    [28] D. Méchin, R. Provo, J. D. Harvey, C. J. McKinstrie. 180-nm wavelength conversion based on Bragg scattering in an optical fiber. Opt. Express, 14, 8995-8999(2006).

    [29] Y. Xiao, R.-J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, G. P. Agrawal. Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers. Opt. Express, 22, 32039-32059(2014).

    CLP Journals

    [1] Meicheng Fu, Yi Zheng, Gaoyuan Li, Wenjun Yi, Junli Qi, Shaojie Yin, Xiujian Li, Xiaowei Guan. Ultra-compact titanium dioxide micro-ring resonators with sub-10-μm radius for on-chip photonics[J]. Photonics Research, 2021, 9(7): 1416

    C. Lacava, T. Dominguez Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, F. Parmigiani. Intermodal frequency generation in silicon-rich silicon nitride waveguides[J]. Photonics Research, 2019, 7(6): 615
    Download Citation