• Journal of Inorganic Materials
  • Vol. 37, Issue 6, 691 (2022)
Aming LIN1、2 and Yiyang SUN1、2、*
Author Affiliations
  • 11. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 22. University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20210491 Cite this Article
    Aming LIN, Yiyang SUN. Stability of Low-index Surfaces of Cs2SnI6 Studied by First-principles Calculations [J]. Journal of Inorganic Materials, 2022, 37(6): 691 Copy Citation Text show less

    Abstract

    Cs2SnI6 is a stable and environmentally friendly halide perovskite material with great potential for photovoltaic and optoelectronic applications. While the surface properties are of paramount importance for device fabrications, there have been no such theoretical studies on this material. Using density functional theory calculations with the SCAN+rVV10 functional, the (001), (011) and (111) surfaces of Cs2SnI6 were studied to reveal their thermodynamic stability. We constructed seven models for these surfaces, including two along the (001) orientation (CsI2- and SnI4-terminated surfaces), two along the (011) orientation (I4- and Cs2SnI2-terminated surfaces) and three along the (111) orientation (non-stoichiometric CsI3-, Sn- and stoichiometric CsI3-terminated surfaces). Because most of the surfaces are non-stoichiometric, their relative stability depends on the experimental preparation condition, which is reflected by the chemical potentials of the constituent elements in the calculation. By determining the allowed chemical potential region, the thermodynamic stability of these Cs2SnI6 surfaces is analyzed. The results show that the surface energies of the (001) and (011) surfaces are affected by the chemical potentials, while the stoichiometric CsI3-terminated (111) surface is unaffected by the chemical potentials and is energetically the most stable surface of Cs2SnI6. Thus, the observed exposure of (111) surface of Cs2SnI6 crystals in several recent experiments is determined to be driven by thermodynamics.
    $E_{\mathrm{cl}}(\mathrm{A}+\mathrm{B})=\frac{1}{2 S}\left[E(\mathrm{~A})_{\text {slab }}^{\mathrm{unrel}}+E(\mathrm{~B})_{\text {slab }}^{\mathrm{unrel}}-n E_{\text {bulk }}\right]$

    View in Article

    $E_{\text {rel }}(\mathrm{A})=\frac{1}{2 S}\left[E(\mathrm{~A})_{\text {slab }}^{\mathrm{rel}}-E(\mathrm{~A})_{\text {slab }}^{\mathrm{unrel}}\right]$

    View in Article

    $E_{\mathrm{surf}}(\mathrm{A}+\mathrm{B})=E_{\mathrm{cl}}(\mathrm{A}+\mathrm{B})+E_{\mathrm{rel}}(\mathrm{A})+E_{\mathrm{rel}}(\mathrm{B})$

    View in Article

    $2 \Delta \mu_{\mathrm{Cs}}+\Delta \mu_{\mathrm{Sn}}+6 \Delta \mu_{\mathrm{I}}=\Delta E_{\mathrm{f}}\left(\mathrm{Cs}_{2} \mathrm{SnI}_{6}\right)$

    View in Article

    $\Delta \mu_{\mathrm{Cs}}+\Delta \mu_{\mathrm{Sn}}+3 \Delta \mu_{\mathrm{I}} \leqslant \Delta E_{\mathrm{f}}\left(\mathrm{CsSnI}_{3}\right)=-5.0 \mathrm{eV}$

    View in Article

    $\Delta \mu_{\mathrm{Sn}}+4 \Delta \mu_{\mathrm{I}} \leqslant \Delta E_{\mathrm{f}}\left(\mathrm{SnI}_{4}\right)=-1.70 \mathrm{eV}$

    View in Article

    $\Delta \mu_{\mathrm{Sn}}+2 \Delta \mu_{\mathrm{I}} \leqslant \Delta E_{\mathrm{f}}\left(\mathrm{SnI}_{2}\right)=-1.37 \mathrm{eV}$

    View in Article

    $\Delta \mu_{\mathrm{Cs}}+3 \Delta \mu_{\mathrm{I}} \leqslant \Delta E_{\mathrm{f}}\left(\mathrm{CsI}_{3}\right)=-3.76 \mathrm{eV}$

    View in Article

    $\Delta \mu_{\mathrm{Cs}}+\Delta \mu_{\mathrm{I}} \leqslant \Delta E_{\mathrm{f}}(\mathrm{CsI})=-3.51 \mathrm{eV}$

    View in Article

    $E_{\text {surf }}(\mathrm{A})=\frac{1}{2 S}\left[E_{\text {slab }}(\mathrm{A})-N_{\mathrm{CS}} \mu_{\mathrm{CS}}-N_{\mathrm{Sn}} \mu_{\mathrm{Sn}}-N_{\mathrm{I}} \mu_{\mathrm{I}}\right]$

    View in Article

    $\begin{array}{c}E_{\text {surf }}(\mathrm{A})=\varnothing(\mathrm{A})+\frac{1}{2 \mathrm{~S}}\left[\left(\frac{N_{\mathrm{CS}}}{2}-N_{\mathrm{Sn}}\right) \Delta \mu_{\mathrm{Sn}}+\right. \\\left.\left(3 N_{\mathrm{CS}}-N_{\mathrm{I}}\right) \Delta \mu_{\mathrm{I}}\right]\end{array}$

    View in Article

    $\begin{array}{l}\text { with } \varnothing(\mathrm{A})=\frac{1}{2 S}\left[E_{\text {slab }}(\mathrm{A})-\frac{N_{\mathrm{Cs}}}{2} E_{\mathrm{bulk}}+\right. \\\left.\left(\frac{N_{\mathrm{Cs}}}{2}-N_{\mathrm{Sn}}\right) E_{\mathrm{Sn}}^{\text {bulk }}+\frac{1}{2}\left(3 N_{\mathrm{CS}}-N_{\mathrm{I}}\right) E_{\mathrm{I}_{2}}^{\text {bulk }}\right]\end{array}$

    View in Article

    Aming LIN, Yiyang SUN. Stability of Low-index Surfaces of Cs2SnI6 Studied by First-principles Calculations [J]. Journal of Inorganic Materials, 2022, 37(6): 691
    Download Citation