• High Power Laser and Particle Beams
  • Vol. 34, Issue 1, 011007 (2022)
Jianli Shang1、3, Juntao Wang1、3, Wanjing Peng1、3, Hang Liu1、3、4, Dan Wang1、3, Yi Ma1、3, Bo Fu2, Yi Yu1、3, Yujun Feng1、3, Li Zhang2, Xu Ruan1、3, Quanwei Jin1、3, Jiayu Yi1、3, Xianlin Ye1、3、4, Yinhong Sun1、3, Weiping Wang2, and Qingsong Gao1、3
Author Affiliations
  • 1Institute of Applied Electronics, CAEP, Mianyang 621900, China
  • 2Institute of Fluid Physics, CAEP, Mianyang 621900, China
  • 3Key Laboratory of Science and Technology on High Energy Laser, CAEP, Mianyang 621900, China
  • 4Graduate School of China Academy of Engineering Physics, Beijing 100088, China
  • show less
    DOI: 10.11884/HPLPB202234.210530 Cite this Article
    Jianli Shang, Juntao Wang, Wanjing Peng, Hang Liu, Dan Wang, Yi Ma, Bo Fu, Yi Yu, Yujun Feng, Li Zhang, Xu Ruan, Quanwei Jin, Jiayu Yi, Xianlin Ye, Yinhong Sun, Weiping Wang, Qingsong Gao. Research progress and prospects of laser diode pumped high-energy laser[J]. High Power Laser and Particle Beams, 2022, 34(1): 011007 Copy Citation Text show less
    References

    [1] Sun Chengwei. Laser irradiation effect[M]. Beijing: National Defense Industry Press, 2002

    [3] Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Nthrop Grumman[C]Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, Applications. 2009: 719507.

    [4] Mcnaught S J, Asman C P, Injeyan A, et al. 100kW coherently combined Nd: YAG MOPA laser array[C]Frontiers in Optics 2009Laser Science XXVFall 2009 OSA Optics & Photonics Technical Digest. 2009: 321334.

    [5] Chen Junchi, Li Jiang, Xu Jialin, et al. 4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd: YAG slab laser[J]. Optics & Laser Technology, 63, 50-53(2014).

    [6] Guo Yading. Beam quality control technology f high energy solid laser system[C]The Fourth Symposium on the Development of Atmospheric Optics Adaptive Optics. 2019

    [9] Li Mi, Hu Hao, Gao Qingsong, et al. A 7.08-kW YAG/Nd: YAG/YAG composite ceramic slab laser with dual concentration doping[J]. IEEE Photonics Journal, 9, 1504010(2017).

    [10] Xu Liu, Wu Yingchen, Du Yinglei, et al. High brightness laser based on Yb: YAG MOPA chain and adaptive optics system at room temperature[J]. Optics Express, 26, 14592-14600(2018).

    [11] Wang Dan, Du Yinglei, Wu Yingchen, et al. 20 kW class high-beam-quality CW laser amplifier chain based on a Yb: YAG slab at room temperature[J]. Optics Letters, 43, 3838-3841(2018).

    [12] Filgas D, Rockwell D, Spariosa K. Next generation lasers for advanced EO systems[J]. Raytheon Technology Today, 1, 9-13(2008).

    [13] Filgas D, Clatterbuck T, Cashen M, et al. Recent results f the Raytheon RELI program[C]Proceedings of SPIE 8381, Laser Technology f Defense Security VIII. 2012: 83810W.

    [14] Giesen A, Speiser J. Fifteen years of work on thin-disk lasers: results and scaling laws[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 598-609(2007).

    [15] Nixon M D, Cates M C. High energy high brightness thin disk laser[C]Proceedings of SPIE 8547, HighPower Lasers 2012: Technology Systems. 2012: 85470D.

    [16] Wilmington M A. Textron defense systems awarded funding f the DARPA HELLADS Program[R]. 2008.

    [17] Ml A, Klimek D E. Textron''s JHPSSL 100 kW ThinZag laser program[C]Conference on Lasers ElectroOptics 2010. 2010: JThH2.

    [18] GAEMS Boeing Team to Develop 300 kWclass HELWS Prototype f US Army[EBOL].https:www.ga.comgaemsboeingteamtodevelop300kwclasshelwsprototypefusarmy

    [19] Nie R Z, She J B, Zhao P F, et al. Fully immersed liquid cooling thin-disk oscillator[J]. Laser Physics Letters, 11, 115808(2014).

    [20] Fu Xing, Li Peilin, Liu Qiang, et al. 3 kW liquid-cooled elastically-supported Nd: YAG multi-slab CW laser resonator[J]. Optics Express, 22, 18421-18432(2014).

    [21] Fu Xing, Liu Qiang, Li Peilin, et al. Numerical simulation of 30-kW class liquid-cooled Nd: YAG multi-slab resonator[J]. Optics Express, 23, 18458-18470(2015).

    [22] Ye Zhibin, Liu Chong, Tu Bo, et al. Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd: YLF thin disk laser resonator[J]. Optics Express, 24, 1758-1772(2016).

    [23] Wang Ke, Tu Bo, Jia Chunyan, et al. 7kW direct-liquid-cooled side-pumped Nd: YAG multi-disk laser resonator[J]. Optics Express, 24, 15012-15020(2016).

    [24] Yi Jiayu, Tu Bo, An Xiangchao, et al. 9 kilowatt-level direct-liquid-cooled Nd: YAG multi-module QCW laser[J]. Optics Express, 26, 13915-13926(2018).

    [25] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power[J]. Electronics Letters, 40, 470-472(2004).

    [26] O''Conn M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10kW[C]Conference on Lasers ElectroOpticsInternational Quantum Electronics Conference. 2009: CThA3.

    [27] Shiner B. The impact of fiber laser technology on the wld wide material processing market[C]CLEO: 2013. 2013: AF2J. 1.

    [30] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).

    [31] Otto H J, Jauregui C, Limpert J, et al. Average power limit of fiberlaser systems with nearly diffractionlimited beam quality[C]Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, Applications. 2016: 97280E.

    [32] Liu Zejin, Zhou Pu, Xu Xiaojun, et al. Coherent beam combining of high power fiber lasers: progress and prospect[J]. Science China Technological Sciences, 56, 1597-1606(2013).

    [33] Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 487-497(2007).

    [34] Madasamy P, Thomas A, Loftus T, et al. Comparison of spectral beam combining approaches f high power fiber laser systems[C]Frontiers in Optics 2008Laser Science XXIVPlasmonics MetamaterialsOptical Fabrication Testing. 2008: FTuJ3.

    [35] Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2, 1-59(2010).

    [36] Huang Zhihua, Liang Xiaobao, Li Chengyu, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 55, 297-302(2016).

    [37] Yan Ping, Huang Yusheng, Sun Junyi, et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes[J]. Laser Physics Letters, 14, 080001(2017).

    [38] Huang Yusheng, Xiao Qirong, Li Dan, et al. 3 kW narrow linewidth high spectral density continuous wave fiber laser based on fiber Bragg grating[J]. Optics & Laser Technology, 133, 106538(2021).

    [39] Xu Jiangming, Liu Wei, Leng Jinyong, et al. Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW[J]. Optics Letters, 40, 2973-2976(2015).

    [41] Yu C X, Shatrovoy O, Fan T Y, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Optics Letters, 41, 5202-5205(2016).

    [42] Wang Yanshan, Ke Weiwei, Peng Wanjing, et al. 3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure[J]. Laser Physics Letters, 17, 075101(2020).

    [43] Wang Yanshan, Sun Yinhong, Peng Wanjing, et al. 3.25 kW all-fiberized and polarization-maintained Yb-doped amplifier with a 20 GHz linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 60, 6331-6336(2021).

    [44] Missile defense agency f president’s budget submission FY 2015: RDT&E Program, 201403.

    [45] Fles A, Dajani I. Kilowattclass, allfiber amplifiers f beam combining[J]. SPIE Newsroom Lasers & Sources, 2016.

    [46] Honea E, Afzal R S, SavageLeuchs M, et al. Advances in fiber laser spectral beam combining f power scaling[C]Proceedings of SPIE 9730, Components Packaging f Laser Systems II. 2016: 97300Y.

    [48] Zheng Ye, Zhu Zhanda, Liu Xiaoxi, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Applied Optics, 58, 8339-8343(2019).

    [49] Krupke W F. Diodepumped alkali laser: 6643311[P] 2003114.

    [50] Krupke W, Beach R J, Kanz V K, et al. Resonance transition 795-nm rubidium laser[J]. Optics Letters, 28, 2336-2338(2003).

    [51] Zhdanov B V, Ehrenreich T, Knize R J. Highly efficient optically pumped cesium vapor laser[J]. Optics Communications, 260, 696-698(2006).

    [52] Zweiback J, Krupke B. High power diode pumped alkali vap lasers[C]Proceedings of SPIE 7005, HighPower Laser Ablation VII. 2008: 700525.

    [53] Miller W S, Sulham C V, Holtgrave J C, et al. Limitations of an optically pumped rubidium laser imposed by atom recycle rate[J]. Applied Physics B, 103, 819-824(2011).

    [54] Novel diodepumped alkali laser achieves first light[R]. http:www.wpafb.af.milnewssty.aspid=123212683.

    [55] Bogachev A V, Garanin S G, Dudov A M, et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electronics, 42, 95-98(2012).

    [56] Chronology of MDA’s plans f laser boostphase defense[ROL]. (20160826).https:mostlymissiledefense.com20160826chronologyofmdasplansflaserboostphasedefenseaugust262016.

    [57] MDA. Department of Energy National Nuclear Security Administration[R]. Washington, 20585.

    [58] Wisoff P J. Diode pumped alkaline laser system: a high powered, low SWaP directed energy option f ballistic missile defense highlevel summaryApril 2017[R]. LLNLTR730237, 2017.

    [59] Department of Defense Fiscal Year(R) 2017 President’s Budget Submission, February 2016[Z].

    [60] Honea E C, Ebbers C A, Beach R J, et al. Analysis of an intracavity-doubled diode-pumped Q-switched Nd: YAG laser producing more than 100 W of power at 0.532 μm[J]. Optics Letters, 23, 1203-1205(1998).

    [61] Yi J, Moon H J, Lee J. Diode-pumped 100-W green Nd: YAG rod laser[J]. Applied Optics, 43, 3732-3737(2004).

    [62] Dudley D R, Mehl O, Wang G Y, et al. Qswitched diodepumped Nd: YAG rod laser with output power of 420W at 532nm 160W at 355nm[C]Proceedings of SPIE 7193, Solid State Lasers XVIII: Technology Devices. 2009: 71930Z.

    [63] Sha W, Hangst A, Stolzenburg C, et al. Frequency doubled highpower disk lasers in pulsed continuouswave operation[C]Proceedings of SPIE 8239, High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, Applications. 2012: 823907.

    [64] Meier T, Willke B, Danzmann K. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode[J]. Optics Letters, 35, 3742-3744(2010).

    [65] Avdokhin A, Gapontsev V, Grapov Y S. 170W continuouswave singlefrequency singlemode green fiber laser[C]Conference on Fiber Lasers IX Technology, Systems, Applications. 2012.

    [66] Favre S, Sidler T C, Salathe R P. Highpower second harmonic generation with freerunning Nd: YAG slab laser f micromachining applications[C]Proceedings of SPIE 4088, First International Symposium on Laser Precision Microfabrication. 2000: 195195.

    [67] Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW QCW regimes producing over 550W of average output power[C]Proceedings of SPIE 8964, Nonlinear Frequency Generation Conversion: Materials, Devices, Applications XIII. 2014: 896407.

    [68] Nubbemeyer T, Kaumanns M, Ueffing M, et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 42, 1381-1384(2017).

    [69] Röcker C, Loescher A, Bienert F, et al. Ultrafast green thin-disk laser exceeding 1.4 kW of average power[J]. Optics Letters, 45, 5522-5525(2020).

    [70] Russbueldt P, Mans T, Hoffmann H D, et al. 1100 W Yb: YAG femtosecond Innoslab amplifier[C]Proceedings Volume 7912, Solid State Lasers XX: Technology Devices. 2011: 79120R.

    [71] Kuznetsov I, Mukhin I, Palashov O, et al. Thin-rod Yb: YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 43, 3941-3944(2018).

    [72] Li Feng, Wang Nana, Yang Zhi, et al. High-energy femtosecond laser system based on a fiber laser seeder, Yb: YAG single crystal fiber and chirped volume Bragg grating[J]. Laser Physics Letters, 17, 065103(2020).

    [73] Injeyan H, Goodno G D. Highpower laser hbook[M]. New Yk: McGrawHill Professional, 2011.

    [74] Yasuhara R, Kawashima T, Sekine T, et al. 213 W average power of 2.4 GW pulsed thermally controlled Nd: glass zigzag slab laser with a stimulated Brillouin scattering mirror[J]. Optics Letters, 33, 1711-1713(2008).

    [75] Fan Zhongwei, Qiu Jisi, Kang Zhijun, et al. High beam quality 5 J, 200 Hz Nd: YAG laser system[J]. Light: Science & Applications, 6, e17004(2017).

    [76] Bayramian A, Armstrong P, Ault E, et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 52, 383-387(2007).

    [77] Gonçalvès-Novo T, Albach D, Vincent B, et al. 14 J/2 Hz Yb3+: YAG diode pumped solid state laser chain[J]. Optics Express, 21, 855-866(2013).

    [78] Banerjee S, Mason P D, Ertel K, et al. 100  J-level nanosecond pulsed diode pumped solid state laser[J]. Optics Letters, 41, 2089-2092(2016).

    [79] Liu Tinghao, Sui Zhan, Chen Lin, et al. 12 J, 10 Hz diode-pumped Nd: YAG distributed active mirror amplifier chain with ASE suppression[J]. Optics Express, 25, 21981-21992(2017).

    CLP Journals

    [1] Boyu Tian, Yingnan Peng, Qiqi Hu, Jiazhu Duan, Yongquan Luo, Xiangjie Zhao, Dayong Zhang. Review of optical phased array technology and its applications[J]. High Power Laser and Particle Beams, 2023, 35(4): 041001

    Jianli Shang, Juntao Wang, Wanjing Peng, Hang Liu, Dan Wang, Yi Ma, Bo Fu, Yi Yu, Yujun Feng, Li Zhang, Xu Ruan, Quanwei Jin, Jiayu Yi, Xianlin Ye, Yinhong Sun, Weiping Wang, Qingsong Gao. Research progress and prospects of laser diode pumped high-energy laser[J]. High Power Laser and Particle Beams, 2022, 34(1): 011007
    Download Citation