• Opto-Electronic Engineering
  • Vol. 45, Issue 9, 170573 (2018)
Gong Chaoyang*, Zhang Chenlin, Gong Yuan, and Rao Yunjiang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2018.170573 Cite this Article
    Gong Chaoyang, Zhang Chenlin, Gong Yuan, Rao Yunjiang. Recent advances in fiber optofluidic sensors[J]. Opto-Electronic Engineering, 2018, 45(9): 170573 Copy Citation Text show less
    References

    [1] Kim S, Streets A M, Lin R R, et al. High-throughput single-molecule optofluidic analysis[J]. Nature Methods, 2011, 8(3): 242–245.

    [2] Bykov D S, Schmidt O A, Euser T G, et al. Flying particle sensors in hollow-core photonic crystal fibre[J]. Nature Photonics, 2015, 9: 461–465.

    [3] Zhang Y, Lei H X, Li B J. Refractive-index-based sorting of colloidal particles using a subwavelength optical fiber in a static fluid[J]. Applied Physics Express, 2013, 6(7): 072001.

    [4] Zhang Y, Liang P B, Liu Z H, et al. A novel temperature sensor based on optical trapping technology[J]. Journal of Lightwave Technology, 2014, 32(7): 1394–1398.

    [5] Wang Y, Leck K S, Ta V D, et al. Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping[J]. Advanced Materials, 2015, 27(1): 169–175.

    [6] Li Z L, Liu Y G, Yan M, et al. A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission[J]. Applied Physics Letters, 2014, 105(7): 071902.

    [7] Zhang N, Liu H, Stolyarov A M, et al. Azimuthally polarized radial emission from a quantum dot fiber laser[J]. ACS Photonics, 2016, 3(12): 2275–2279.

    [8] Liu X L, Ding W, Wang Y Y, et al. Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing[J]. Optics Letters, 2017, 42(4): 863–866.

    [9] Gu F X, Xie F M, Lin X, et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering[J]. Light: Science & Applications, 2017, 6: e17061.

    [10] Gerosa R M, Sudirman A, de S Menezes L, et al. All-fiber high repetition rate microfluidic dye laser[J]. Optica, 2015, 2(2): 186–193.

    [11] Fan X D, White I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 2011, 5(10): 591–597.

    [12] Humar M, Yun S H. Intracellular microlasers[J]. Nature Photonics, 2015, 9(9): 572–576.

    [13] Fan X D, Yun S K H. The potential of optofluidic biolasers[J]. Nature Methods, 2014, 11: 141–147.

    [14] Gong C Y, Gong Y, Oo M K K, et al. Sensitive sulfide ion detection by optofluidic catalytic laser using horseradish peroxidase (HRP) enzyme[J]. Biosensors and Bioelectronics, 2017, 96: 351–357.

    [15] Wu J Y, Wang W, Gong C Y, et al. Tuning the strength of intramolecular charge-transfer of triene-based nonlinear optical dyes for electro-optics and optofluidic lasers[J]. Journal of Materials Chemistry C, 2017, 5(30): 7472–7478.

    [16] Ton X A, Acha V, Bonomi P, et al. A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe[J]. Biosensors and Bioelectronics, 2015, 64: 359–366.

    [17] Gong C Y, Gong Y, Chen Q S, et al. Reproducible fiber optofluidic laser for disposable and array applications[J]. Lab on a Chip, 2017, 17(20): 3431–3436.

    [18] Mullokandov G, Baccarini A, Ruzo A, et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries[J]. Nature Methods, 2012, 9(8): 840–846.

    [19] Gong C Y, Gong Y, Zhang W L, et al. Fiber optofluidic microlaser with lateral single mode emission[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 7940047.

    [20] Chen Q S, Ritt M, Sivaramakrishnan S, et al. Optofluidic lasers with a single molecular layer of gain[J]. Lab on a Chip, 2014, 14(24): 4590–4595.

    [21] Lee W, Chen Q S, Fan X D, et al. Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption[J]. Lab on A Chip, 2016, 16(24): 4770–4776.

    [22] Gong Y, Ye A Y, Wu Y, et al. Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment[J]. Optics Express, 2013, 21(13): 16181–16190.

    [23] Liu Z H, Guo C K, Yang J, et al. Tapered fiber optical tweezers for microscopic particle trapping: Fabrication and application[J]. Optics Express, 2006, 14(25): 12510–12516.

    [24] Gong Y, Zhang C L, Liu Q F, et al. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity[J]. Optics Express, 2015, 23(3): 3762–3769.

    [25] Zhang C L, Gong Y, Liu Q F, et al. Graded-index fiber enabled strain-controllable optofluidic manipulation[J]. IEEE Photonics Technology Letters, 2016, 28(3): 256–259.

    [26] Gong Y, Huang W, Liu Q F, et al. Graded-index optical fiber tweezers with long manipulation length[J]. Optics Express, 2014, 22(21): 25267–25276.

    [27] Gong Y, Liu Q F, Zhang C L, et al. Microfluidic flow rate detection with a large dynamic range by optical manipulation[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2508–2511.

    [28] Gong Y, Qiu L M, Zhang C L, et al. Dual-mode fiber optofluidic flowmeter with a large dynamic range[J]. Journal of Lightwave Technology, 2017, 35(11): 2156–2160.

    [29] Gong Y, Zhang M L, Gong C Y, et al. Sensitive optofluidic flow rate sensor based on laser heating and microring resonator[J]. Microfluidics and Nanofluidics, 2015, 19(6): 1497–1505.

    [30] Zhang C L, Gong Y, Zou W L, et al. Microbubble-based fiber optofluidic interferometer for sensing[J]. Journal of Lightwave Technology, 2017, 35(13): 2514–2519.

    [31] Zhang C L, Gong Y, Wu Y, et al. Lab-on-tip based on photothermal microbubble generation for concentration detection[J]. Sensors and Actuators B: Chemical, 2018, 255: 2504–2509.

    Gong Chaoyang, Zhang Chenlin, Gong Yuan, Rao Yunjiang. Recent advances in fiber optofluidic sensors[J]. Opto-Electronic Engineering, 2018, 45(9): 170573
    Download Citation