• Acta Optica Sinica
  • Vol. 43, Issue 19, 1934001 (2023)
Xiaotong Zhong1、2, Huiya Liu3、*, Quanli Dong1、4、**, Ning Kang3, and Jie Zhang4、5
Author Affiliations
  • 1Department of Science, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong , China
  • 2Department of Physics, Harbin Institute of Technology, Harbin 150001, Heilongjiang , China
  • 3National Laboratory on High Power Lasers and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
  • 5Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.3788/AOS230632 Cite this Article Set citation alerts
    Xiaotong Zhong, Huiya Liu, Quanli Dong, Ning Kang, Jie Zhang. Performance Analysis and Experimental Test of X-Ray Spherically Curved Crystal Imaging[J]. Acta Optica Sinica, 2023, 43(19): 1934001 Copy Citation Text show less
    References

    [1] Wang L F, Ye W H, Chen Z et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 33, 012001(2021).

    [2] Bai X H, Bai Y L, Liu B Y et al. SG diagnostic equipment: gating pinhole framing camera[J]. Optics and Precision Engineering, 19, 367-373(2011).

    [3] Werner W. Imaging properties of Wolter I type X-ray telescopes[J]. Applied Optics, 16, 764-773(1977).

    [4] Pickworth L A, McCarville T, Decker T et al. A Kirkpatrick-Baez microscope for the national ignition facility[J]. Review of Scientific Instruments, 85, 11D611(2014).

    [5] Yi S Z, Si H X, Huang Q S et al. Research progress of multi-channel Kirkpatrick-Baez microscope for X-ray diagnostics in laser inertial confinement fusion[J]. Acta Optica Sinica, 42, 1134007(2022).

    [6] Shi J, Zhao Y X, Li M et al. Hard X-ray transmission imaging of spherical curved crystal[J]. Acta Optica Sinica, 42, 1134011(2022).

    [7] Aglitskiy Y, Lehecka T, Obenschain S et al. High-resolution monochromatic X-ray imaging system based on spherically bent crystals[J]. Applied Optics, 37, 5253-5261(1998).

    [8] Stoeckl C, Fiksel G, Guy D et al. A spherical crystal imager for OMEGA EP[J]. Review of Scientific Instruments, 83, 033107(2012).

    [9] Shi Y J, Wang F D, Wan B N et al. Imaging X-ray crystal spectrometer on EAST[J]. Plasma Physics and Controlled Fusion, 52, 085014(2010).

    [10] Pikuz T A, Faenov A Y, Skobelev I Y et al. Highly efficient X-ray imaging and backlighting schemes based on spherically bent crystals[J]. Proceedings of SPIE, 5196, 362-374(2004).

    [11] Koch J A, Aglitskiy Y, Brown C et al. 4.5- and 8-keV emission and absorption X-ray imaging using spherically bent quartz 203 and 211 crystals (invited)[J]. Review of Scientific Instruments, 74, 2130-2135(2003).

    [12] Belyaev L M, Gil'varg A B, Mikhaĭlov Y A et al. X-ray photography of laser plasmas with the aid of analyzer crystals bent to form second-order surfaces[J]. Soviet Journal of Quantum Electronics, 6, 1121-1122(1976).

    [13] Sinars D B, Bennett G R, Wenger D F et al. Evaluation of bent-crystal X-ray backlighting and microscopy techniques for the Sandia Z machine[J]. Applied Optics, 42, 4059-4071(2003).

    [14] Brown C, Seely J, Feldman U et al. X-ray imaging of targets irradiated by the Nike KrF laser[J]. Review of Scientific Instruments, 68, 1099-1102(1997).

    [15] Schollmeier M S, Geissel M, Shores J E et al. Performance of bent-crystal X-ray microscopes for high energy density physics research[J]. Applied Optics, 54, 5147-5161(2015).

    [16] Chen B L, Yang Z H, Li J et al. Spherical bending crystal imaging system for measuring interface trajectory in ablation process[J]. Acta Optica Sinica, 42, 1134012(2022).

    [17] Turner D C, Knight L V, Mena A R et al. Focusing crystal von Hamos spectrometers for XRF applications[J]. Advances in X-ray Analysis, 44, 329-335(2001).

    [18] Brown C, Seely J, Feldman U et al. High-resolution X-ray imaging of planar foils irradiated by the Nike KrF laser[J]. Physics of Plasmas, 4, 1397-1401(1997).

    [19] Flora F, Bollanti S, Lai A et al. Novel portable high-luminosity monochromatically tunable X-ray microscope[J]. Proceedings of SPIE, 4504, 240-252(2001).

    [20] Young B K F, Osterheld A L, Price D F et al. High-resolution X-ray spectrometer based on spherically bent crystals for investigations of femtosecond laser plasmas[J]. Review of Scientific Instruments, 69, 4049-4053(1998).

    [21] Bennett G R, Sinars D B, Wenger D F et al. High-brightness, high-spatial-resolution, 6.151 keV X-ray imaging of inertial confinement fusion capsule implosion and complex hydrodynamics experiments on Sandia’s Z accelerator (invited)[J]. Review of Scientific Instruments, 77, 10E322(2006).

    [22] Yang Q G, Li Z R, Peng Q X et al. Optimum design of laser-driven-monochromatic X-ray backlighting system[J]. High Power Laser and Particle Beams, 20, 1983-1988(2008).

    [23] Bitter M, Hill K W, Scott S et al. Wide-angle point-to-point X-ray imaging with almost arbitrarily large angles of incidence[J]. The Review of Scientific Instruments, 79, 10E927(2008).

    Xiaotong Zhong, Huiya Liu, Quanli Dong, Ning Kang, Jie Zhang. Performance Analysis and Experimental Test of X-Ray Spherically Curved Crystal Imaging[J]. Acta Optica Sinica, 2023, 43(19): 1934001
    Download Citation