• Laser & Optoelectronics Progress
  • Vol. 55, Issue 11, 111403 (2018)
Ming Jin1、**, Dingyong He1、2、*, Zengjie Wang2, Zheng Zhou1、2, Guohong Wang2, and Xiaoxuan Li1
Author Affiliations
  • 1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
  • 2 Beijing Engineering Research Center of Eco-Materials and LCA, Beijing 100124, China
  • show less
    DOI: 10.3788/LOP55.111403 Cite this Article Set citation alerts
    Ming Jin, Dingyong He, Zengjie Wang, Zheng Zhou, Guohong Wang, Xiaoxuan Li. Microstructure and Properties of Laser Cladded 2205 Dual-Phase Stainless Steel/TiC Composite Coatings[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111403 Copy Citation Text show less
    References

    [1] Zhong M L, Liu W J. Leading areas and hot topics on global laser materials processing research[J]. Chinese Journal of Lasers, 35, 1653-1659(2008).

    [2] Abboud J H. West D R F. Ceramic-metal composites produced by laser surface treatment[J]. Materials Science and Technology, 5, 725-728(1989).

    [3] Chang J, Wang F. Microstructure of Fe-based alloy coating by plasma cladding process on Q235[J]. Hot Working Technology, 37, 103-104,108(2008).

    [4] Cui Z Q, Wang W X, Cao G G et al. Microstructure and properties of Fe-based alloy and B4C ceramics composite coating on low carbon steel by laser cladding[J]. Transactions of Materials and Heat Treatment, 32, 134-138(2011).

    [5] Li S, Xu G H, Han L F et al. Application status and research development of Fe-based alloy material for laser cladding[J]. Hot Working Technology, 40, 112-114, 117(2011).

    [6] Zan S P, Jiao J K, Zhang W W. Study on laser cladding process of 316L stainless steel powder[J]. Laser & Optoelectronics Progress, 53, 061406(2016).

    [7] Fan J W, He C C, Du C F et al. Effects of aging treatment at 590 ℃ on the phase structure and hardness of 2205 duplex stainless steel[J]. Shanghai Nonferrous Metals, 32, 61-65(2011).

    [8] Momeni A, Dehghani K, Zhang X X. Mechanical and microstructural analysis of 2205 duplex stainless steel under hot working condition[J]. Journal of Materials Science, 47, 2966-2974(2012). http://link.springer.com/article/10.1007/s10853-011-6130-3

    [9] Zeng X G, Luo H. duplex stainless steel[J]. Heavy Casting and Forging, 2009, 12-15(2205).

    [10] Chen L, Ma X C, Liu X et al. Processing map for hot working characteristics of a wrought 2205 duplex stainless steel[J]. Materials & Design, 32, 1292-1297(2011). http://www.sciencedirect.com/science/article/pii/S0261306910005728

    [11] Lin S J, Xiong W H, Wang S Y et al. Effect of reinforcing particles content on properties of TiC/316L composites[J]. Materials Science and Engineering of Powder Metallurgy, 18, 373-378(2013).

    [12] Akhtar F, Guo S J. Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites[J]. Materials Characterization, 59, 84-90(2008). http://www.sciencedirect.com/science/article/pii/S1044580306003184

    [13] Duan X X, Gao S Y, Gu Y F et al. Study on reinforcement mechanism and frictional wear properties of 316L+SiC mixed layer deposited by laser cladding[J]. Chinese Journal of Lasers, 43, 0103004(2016).

    [14] Xue M P, Han B, Wang Y et al. Microstructures and corrosion resistance properties of Ni-based WC/Cr3C2 coating prepared by laser cladding[J]. Laser & Optoelectronics Progress, 48, 091403(2011).

    [15] Wang Z W, Zhang H, Zhao C. Study on microstructure and properties of TiC-Fe45-based composite coating by argon tungsten-arc cladding[J]. Surface Technology, 43, 51-54, 75(2014).

    [16] Qiao H, Li Q T, Fu H G et al. Microstructure and micro-hardness of in situ synthesized TiC particles reinforced Fe-based alloy composite coating by laser cladding[J]. Materialwissenschaft und Werkstofftechnik, 45, 85-90(2014). http://onlinelibrary.wiley.com/doi/10.1002/mawe.201400188/full

    [17] Lee J M, Euh K, Oh J C et al. Microstructure and hardness improvement of TiC/stainless steel surface composites fabricated by high-energy electron beam irradiation[J]. Materials Science and Engineering: A, 323, 251-259(2002). http://www.sciencedirect.com/science/article/pii/S0921509301013788

    [18] He C L, Chen S K, Zhou Z H et al. Research situation and application prospects of laser cladding metal-based titanium carbide reinforced coating[J]. Hot Working Technology, 42, 7-10(2013).

    [19] Zhang X J, Fang J, Shi H Z et al[J]. Study of laser cladding Fe-based alloy/ceramic TiC layer on 20 steel Hot Working Technology, 1997, 24-26.

    [20] Huang Z F, Zhang C, Tang Q H et al. Effects of WC particles on the microstructure and hardness of FeCoCrNiCu high-entropy alloy coating prepared by laser cladding[J]. China Surface Engineering, 26, 13-19(2013).

    [21] Wang X H, Qu S Y, Du B S et al. Effect of molybdenum on microstructure and wear properties of Fe-Ti-Mo-C laser clad coatings[J]. Materials Science and Technology, 27, 1222-1228(2011). http://www.tandfonline.com/doi/full/10.1179/026708310X12699498462841

    [22] Tjong S C, Lau K C. Abrasion resistance of stainless-steel composites reinforced with hard TiB2 particles[J]. Composites Science and Technology, 60, 1141-1146(2000). http://www.sciencedirect.com/science/article/pii/S0266353800000087

    Ming Jin, Dingyong He, Zengjie Wang, Zheng Zhou, Guohong Wang, Xiaoxuan Li. Microstructure and Properties of Laser Cladded 2205 Dual-Phase Stainless Steel/TiC Composite Coatings[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111403
    Download Citation