• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 2, 164 (2023)
Wen XIAO*, Minghao ZHANG, Cunlin ZHANG, and Liangliang ZHANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.02.002 Cite this Article
    XIAO Wen, ZHANG Minghao, ZHANG Cunlin, ZHANG Liangliang. Characteristics of terahertz wave generated from liquids[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 164 Copy Citation Text show less
    References

    [1] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-Modern techniques and applications [J]. Laser & Photonics Reviews, 2011, 5(1): 124-166.

    [2] Hangyo M, Tani M, Nagashima T. Terahertz time-domain spectroscopy of solids: A review [J]. International Journal of Infrared and Millimeter Waves, 2005, 26(12): 1661-1690.

    [3] Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photonics, 2007, 1(2): 97-105.

    [4] Zalden P, Song L W, Wu X J, et al. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation [J]. Nature Communications, 2018, 9: 2142.

    [5] Zhao H, Tan Y, Zhang L L, et al. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence [J]. Light: Science & Applications, 2020, 9: 136.

    [6] Tan Y, Zhao H, Zhang R, et al. Transient evolution of quasifree electrons of plasma in liquid water revealed by optical-pump terahertz-probe spectroscopy [J]. Advanced Photonics, 2021, 3: 015002.

    [7] Tcypkin A, Zhukova M, Melnik M, et al. Giant third-order nonlinear response of liquids at terahertz frequencies [J]. Physical Review Applied, 2021, 15(5): 054009.

    [8] Fitzgerald A J, Berry E, Zinov’ev N N, et al. Catalogue of human tissue optical properties at terahertz frequencies [J]. Journal of Biological Physics, 2003, 29(2-3): 123-128.

    [9] Oh S J, Kim S H, Ji Y B, et al. Study of freshly excised brain tissues using terahertz imaging [J]. Biomedical Optics Express, 2014, 5(8): 2837-2842.

    [10] Joseph C S, Yaroslavsky A N, Neel V A, et al. Continuous wave terahertz transmission imaging of nonmelanoma skin cancers [J]. Lasers in Surgery and Medicine, 2011, 43(6): 457-462.

    [11] Cheon H, Yang H J, Lee S H, et al. Terahertz molecular resonance of cancer DNA [J]. Scientific Reports, 2016, 6: 37103.

    [12] Melinger J S, Harsha S S, Laman N, et al. Temperature dependent characterization of terahertz vibrations of explosives and related threat materials [J]. Optics Express, 2010, 18(26): 27238-27250.

    [13] Ergün S, Snmez S. Terahertz technology for military applications [J]. Journal of Military and Information Science, 2015, 3(1): 13-16.

    [14] Palka N, Szala M, Czerwinska E. Characterization of prospective explosive materials using terahertz time-domain spectroscopy [J]. Applied Optics, 2016, 55(17): 4575-4583.

    [15] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics [J]. Nature Photonics, 2016, 10(6): 371-379.

    [16] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(2): 143-171.

    [17] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications [J]. Journal of Applied Physics, 2010, 107(11): 111101.

    [18] Dai J M, Liu J L, Zhang X C. Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183-190.

    [19] Fülp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources [J]. Advanced Optical Materials, 2020, 8(3): 1900681.

    [20] Lee Y S. Principles of Terahertz Science and Technology [M]. Springer, 2009.

    [21] Bartel T, Gaal P, Reimann K, et al. Generation of single-cycle THz transients with high electric-field amplitudes [J]. Optics Letters, 2005, 30(20): 2805-2807.

    [22] Karpowicz N, Dai J M, Lu X F, et al. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap" [J]. Applied Physics Letters, 2008, 92(1): 011131.

    [23] Ronne C, Thrane L, strand P O, et al. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation [J]. The Journal of Chemical Physics, 1997, 107(14): 5319-5331.

    [24] Hale G M, Querry M R. Optical constants of water in the 200 nm to 200 μm wavelength region [J]. Applied Optics, 1973, 12(3): 555-563.

    [25] Jin Q, E Y W, Williams K, et al. Observation of broadband terahertz wave generation from liquid water [J]. Applied Physics Letters, 2017, 111(7): 071103.

    [26] Dey I, Jana K, Fedorov V Y, et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids [J]. Nature Communications, 2017, 8: 1184.

    [27] Schnebelin C, Cassagne C, de Araújo C B, et al. Measurements of the third and fifth-order optical nonlinearities of water at 532 and 1064 nm using the D4σ method [J]. Optics Letters, 2014, 39(17): 5046-5049.

    [28] Tcypkin A N, Melnik M V, Zhukova M O, et al. High Kerr nonlinearity of water in THz spectral range [J]. Optics Express, 2019, 27(8): 10419-10425.

    [29] Williams F, Varma S P, Hillenius S. Liquid water as a lone-pair amorphous semiconductor [J]. The Journal of Chemical Physics, 1976, 64(4): 1549-1554.

    [30] Nikogosyan D N, Oraevsky A A, Rupasov V I. Two-photon ionization and dissociation of liquid water by powerful laser UV radiation [J]. Chemical Physics, 1983, 77(1): 131-143.

    [31] Crowell R A, Bartels D M. Multiphoton ionization of liquid water with 3.0-5.0 eV photons [J]. The Journal of Physical Chemistry, 1996, 100(45): 17940-17949.

    [32] Schneider A, Neis M, Stillhart M, et al. Generation of terahertz pulses through optical rectification in organic DAST crystals: Theory and experiment [J]. Journal of the Optical Society of America B, 2006, 23(9): 1822-1835.

    [33] Horiuchi N. Terahertz surprises [J]. Nature Photonics, 2018, 12(3): 128-130.

    [34] Li M, Li Z Y, Nan J Y, et al. THz generation from water wedge excited by dual-color pulse [J]. Chinese Optics Letters, 2020, 18(7): 073201.

    [35] Jin Q, E Y W, Gao S H, et al. Preference of subpicosecond laser pulses for terahertz wave generation from liquids [J]. Advanced Photonics, 2020, 2: 015001.

    [36] Feng S J, Dong L Q, Wu T, et al. Terahertz wave emission from water lines [J]. Chinese Optics Letters, 2020, 18(2): 023202.

    [37] Zhang L L, Wang W M, Wu T, et al. Strong terahertz radiation from a liquid-water line [J]. Physical Review Applied, 2019, 12: 014005.

    [38] Chen Y X, He Y H, Zhang Y F, et al. Systematic investigation of terahertz wave generation from liquid water lines [J]. Optics Express, 2021, 29(13): 20477-20486.

    [39] Solyankin P M, Lakatosh B V, Krivokorytov M S, et al. Single free-falling droplet of liquid metal as a source of directional terahertz radiation [J]. Physical Review Applied, 2020, 14(3): 034033.

    [40] Ismagilov A O, Ponomareva E A, Zhukova M O, et al. Liquid jet-based broadband terahertz radiation source [J]. Optical Engineering, 2021, 60(8): 082009.

    [41] E Y W, Zhang L L, Tcypkin A, et al. Broadband THz sources from gases to liquids [J]. Ultrafast Science, 2021, 3: 80-96.

    [42] E Y W, Cao Y Q, Ling F, et al. Flowing cryogenic liquid target for terahertz wave generation [J]. AIP Advances, 2020, 10(10): 105119.

    [43] Balakin A V, Coutaz J L, Makarov V A, et al. Terahertz wave generation from liquid nitrogen [J]. Photonics Research, 2019, 7(6): 678-686.

    [44] Jin Q, Dai J M, E YW, et al. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields [J]. Applied Physics Letters, 2018, 113(26): 261101.

    [45] Watanabe A, Saito H, Ishida Y, et al. A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers [J]. Optics Communications, 1989, 71(5): 301-304.

    [46] Taylor G. Formation of thin flat sheets of water [J]. Proceedings of the Royal Society of London: Series A, 1961, 259: 1-17.

    [47] Wang T W, Klarskov P, Jepsen P U. Ultrabroadband THz time-domain spectroscopy of a free-flowing water film [J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 425-431.

    [48] Hale G M, Querry M R. Optical constants of water in the 200 nm to 200 μm wavelength region [J]. Applied Optics, 1973, 12(3): 555-563.

    [49] Kennedy P K, Hammer D X, Rockwell B A. Laser-induced breakdown in aqueous media [J]. Progress in Quantum Electronics, 1997, 21(3): 155-248.

    [50] Hamster H, Sullivan A, Gordon S, et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction [J]. Physical Review Letters, 1993, 71(17): 2725-2728.

    [51] Hamster H, Sullivan A, Gordon S, et al. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas [J]. Physical Review E, 1994, 49(1): 671-677.

    [52] E Y W, Jin Q, Tcypkin A, et al. Terahertz wave generation from liquid water films via laser-induced breakdown [J]. Applied Physics Letters, 2018, 113(18): 181103.

    [53] Buccheri F, Zhang X C. Terahertz emission from laser-induced microplasma in ambient air [J]. Optica, 2015, 2(4): 366.

    [54] Stumpf S, Ponomareva E, Tcypkin A, et al. Temporal field and frequency spectrum of intense femtosecond radiation dynamics in the process of plasma formation in a dielectric medium [J]. Laser Physics, 2019, 29(12): 124014.

    [55] Ponomareva E A, Stumpf S A, Tcypkin A N, et al. Impact of laser-ionized liquid nonlinear characteristics on the efficiency of terahertz wave generation [J]. Optics Letters, 2019, 44(22): 5485-5488.

    [56] Kraus A D, Welty J R, Aziz A S. Introduction to Thermal and Fluid Engineering [M]. Boca Raton: CRC Press, 2011.

    [57] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air [J]. Optics Letters, 2000, 25(16): 1210-1212.

    [58] Kress M, Loffler T, Eden S, et al. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves [J]. Optics Letters, 2004, 29(10): 1120-1122.

    [59] Flettner A, Pfeifer T, Walter D, et al. High-harmonic generation and plasma radiation from water microdroplets [J]. Applied Physics B, 2003, 77(8): 747-751.

    [60] Kandidov V P, Kosareva O G, Golubtsov I S, et al. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media(or supercontinuum generation) [J]. Applied Physics B, 2003, 77(2-3): 149-165.

    [61] Tcypkin A N, Ponomareva E A, Putilin S E, et al. Flat liquid jet as a highly efficient source of terahertz radiation [J]. Optics Express, 2019, 27(11): 15485-15494.

    [62] Anand M, Kahaly S, Kumar G R, et al. Enhanced hard X-ray emission from microdroplet preplasma [J]. Applied Physics Letters, 2006, 88(18): 181111.

    [63] Vinokhodov A, Krivokorytov M, Sidelnikov Y, et al. Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source [J]. Review of Scientific Instruments, 2016, 87(10): 103304.

    [64] Kim K Y, Glownia J H, Taylor A J, et al. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields [J]. Optics Express, 2007, 15(8): 4577-4584.

    [65] Chin S L. Femtosecond Laser Filamentation [M]. New York: Springer, 2010.

    [66] Berglund M, Rymell L, Hertz H M. Ultraviolet prepulse for enhanced X-ray emission and brightness from droplet-target laser plasmas [J]. Applied Physics Letters, 1996, 69(12): 1683-1685.

    [67] Ponomareva E A, Tcypkin A N, Smirnov S V, et al. Double-pump technique-one step closer towards efficient liquid-based THz sources [J]. Optics Express, 2019, 27(22): 32855-32862.

    [68] Ponomareva E A, Ismagilov A O, Putilin S E, et al. Varying pre-plasma properties to boost terahertz wave generation in liquids [J]. Communications Physics, 2021, 4(1): 4.

    [69] Huang H H, Nagashima T, Hsu W H, et al. Dual THz wave and X-ray generation from a water film under femtosecond laser excitation [J]. Nanomaterials(Basel, Switzerland), 2018, 8(7): 523.

    [70] E YW, Jin Q, Zhang X C. Enhancement of terahertz emission by a preformed plasma in liquid water [J]. Applied Physics Letters, 2019, 115(10): 101101.

    [71] Samios J, Mittag U, Dorfmüller T. The far infrared absorption spectrum of liquid nitrogen [J]. Molecular Physics, 1985, 56(3): 541-556.

    [72] Cao Y Q, E Y W, Huang P J, et al. Broadband terahertz wave emission from liquid metal [J]. Applied Physics Letters, 2020, 117(4): 041107.

    [73] Snyder L R. Classification of the solvent properties of common liquids [J]. Journal of Chromatography A, 1974, 92(2): 223-230.

    XIAO Wen, ZHANG Minghao, ZHANG Cunlin, ZHANG Liangliang. Characteristics of terahertz wave generated from liquids[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 164
    Download Citation