• Acta Optica Sinica
  • Vol. 36, Issue 10, 1026008 (2016)
Yu Siyuan*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.1026008 Cite this Article Set citation alerts
    Yu Siyuan. Integrated Photonic Methods for Manipulation of Optical Vortices[J]. Acta Optica Sinica, 2016, 36(10): 1026008 Copy Citation Text show less
    References

    [1] Poynting J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society of London Series A, 1909, 82(557): 560-567.

    [2] Beth R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 1936, 50(2): 115-125.

    [3] Allen L, Beijersbergen M, Spreeuw R, et al. Orbital angulae momentum of light and the transformation of Laduerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

    [4] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6: 488-496.

    [5] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.

    [6] Wang J, Liu J, Lü X, et al. Ultra-high 435-bit/s/Hz spectral efficiency using N-dimensional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals[C]. European Conference on Optical Communication, 2015: Th.2.5.4.

    [7] Shu J H, Chena Z Y, Pu J X, et al. Tight focusing of partially coherent and radially polarized vortex beams[J]. Optics Communications, 2013, 295: 5-10.

    [8] Edfors O, Johansson A J. Is orbital angular momentum (OAM) based radio communication an unexploited area [J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 1126-1131.

    [9] Brunet C, Vaity P, Messaddeq Y, et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 2014, 22(21): 26117-26127.

    [10] Ung B, Vaity P, Wang L, et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes[J]. Optics Express, 2014, 22(15): 18044-18055.

    [11] Padgett M J, Allen L. The angular momentum of light: optical spanners and the rotational frequency shift[J]. Optical and Quantum Electronics, 1999, 31(1): 1-12.

    [12] Ding D S, Zhang W, Zhou Z Y, et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble[J]. Physical Review Letters, 2015, 114(5): 050502.

    [13] Han Y J, Liao G Q, Chen L M, et al. High-order optical vortex harmonics generated by relativistic femtosecond laser pulse[J]. Chinese Physics B, 2015, 24(6): 065602.

    [14] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456.

    [15] Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 1992, 17(3): 221-223.

    [16] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5): 321-327.

    [17] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.

    [18] Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Letters, 2002, 27(21): 1875-1877.

    [19] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

    [20] Snyder A W, Love J D. Optical waveguide theory[M]. London: Chapman and Hall, 1983.

    [21] Wu C, Makino T, Glinski J, et al. Self-consistent coupled-wave theory for circular gratings on planar dielectric waveguides[J]. Journal of Lightwave Technology, 1991, 9(10): 1264-1277.

    [22] Jordan R H, Hall D G, King O, et al. Lasing behavior of circular grating surface-emitting semiconductor lasers[J]. Journal of the Optical Society of America B, 1997, 14(2): 449-453.

    [23] Barlow G F, Shore A, Turnbull G A, et al. Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser[J]. Journal of the Optical Society of America B, 2004, 21(12): 2142-2150.

    [24] Scheuer J, Green W M J, DeRose G A, et al. Lasing from a circular Bragg nanocavity with an ultrasmall modal volume[J]. Applied Physics Letters, 2005, 86(25): 251101.

    [25] Scheuer J, Green W M, DeRose G A, et al. InGaAsP annular Bragg lasers: theory, applications, and modal properties[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(2): 476-484.

    [26] Doerr C R, Buhl L L. Circular grating coupler for creating focused azimuthally and radially polarized beams[J]. Optics Letters, 2011, 36(7): 1209-1211.

    [27] Scheuer J. Radial Bragg lasers: optimal design for minimal threshold levels and enhanced mode discrimination[J]. Journal of the Optical Society of America B, 2007, 24(9): 2178-2184.

    [28] Liang G Z, Liang H K, Zhang Y, et al. Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers[J]. Applied Physics Letters, 2013, 102(3): 031119.

    [29] Fujita M, Baba T. Microgear laser[J]. Applied Physics Letters, 2002, 80(12): 2051-2053.

    [30] Zhang Z Y, Dainese M, Wosinski L, et al. Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling[J]. Optics Express, 2008, 16(7): 4621-4630.

    [31] Arbabi A, Goddard L L. Grating assisted mode coupling in microring resonators[C]. 2013 IEEE Photonics Conference, 2013: 434-435.

    [32] Cai X L, Wang J W, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.

    [33] Greene P L, Hall D G. Effects of radiation on circular-grating DFB lasers. Ⅰ. Coupled-mode equations[J]. IEEE Journal of Quantum Electronics, 2001, 37(3): 353-364.

    [34] Huy K P, Morand A, Amans D, et al. Analytical study of the whispering-gallery mode in two-dimensional microgear cavity using coupled-mode theory[J]. Journal of the Optical Society of America B, 2005, 22(8): 1793-1803.

    [35] Sun X K, Yariv A. Modal properties and modal control in vertically emitting annular Bragg lasers[J]. Optics Express, 2007, 15(25): 17323-17333.

    [36] Fujita M, Baba T. Proposal and finite-difference time-domain simulation of whispering gallery mode microgear cavity[J]. IEEE Journal of Quantum Electronics, 2001, 37(10): 1253-1258.

    [37] Zhu J B, Cai X L, Chen Y J, et al. Theoretical model for angular grating-based integrated optical vortex beam emitters[J]. Optics Letters, 2013, 38(8): 1343-1345.

    [38] Yu S Y, Cai X L, Zhang N. High index contrast integrated optics in the cylindrical coordinate[C]. SPIE, 2015, 9372: 937203.

    [39] Streifer W, Scifres D, Burnham R. Analysis of grating-coupled radiation in GaAs: GaAlAs lasers and waveguides -Ⅰ[J]. IEEE Journal of Quantum Electronics, 1976, 12(7): 422-428.

    [40] Streifer W, Burnham R, Scifres D. Analysis of grating-coupled radiation in GaAs: GaAlAs lasers and waveguides -Ⅱ: blazing effects[J]. IEEE Journal of Quantum Electronics, 1976, 12(8): 494-499.

    [41] Streifer W, Scifres D, Burnham R. Coupled wave analysis of DFB and DBR lasers[J]. IEEE Journal of Quantum Electronics, 1977, 13(4): 134-141.

    [42] Hardy A, Welch D F, Streifer W. Analysis of second-order gratings[J]. IEEE Journal of Quantum Electronics, 1989, 25(10): 2096-2105.

    [43] Watson G N. A treatise on the theory of Bessel functions[M]. 2nd edition. Cambridge: Cambridge University Press, 1995.

    [44] Strain M J, Cai X L, Wang J W, et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters[J]. Nature Communications, 2014, 5: 4856.

    [45] Liu J, Li S M, Zhu L, et al. Demonstration of few mode fiber transmission link seeded by a silicon photonic integrated optical vortex emitter[C]. European Conference on Optical Communication, 2015: 15636022.

    [46] Moreno I, Davis J A, Ruiz I, et al. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating[J]. Optics Express, 2010, 18(7): 7173-7183.

    [47] Zhu J B, Chen Y J, Zhang Y F, et al. Spin and orbital angular momentum and their conversion in cylindrical vector vortices[J]. Optics Letters, 2014, 39(15): 4435-4438.

    [48] Li H L, Phillips D B, Wang X Y, et al. Orbital angular momentum vertical-cavity surface-emitting lasers[J]. Optica, 2015, 2(6): 547-552.

    CLP Journals

    [1] Jianwei Li, Yi Zheng, Zuohan Li, Yifei Gao, Qingling Li. Self-Mode-Locked Picosecond Vortex Beams Based on Nd∶GdVO4 Crystal[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021411

    Yu Siyuan. Integrated Photonic Methods for Manipulation of Optical Vortices[J]. Acta Optica Sinica, 2016, 36(10): 1026008
    Download Citation