• Infrared and Laser Engineering
  • Vol. 47, Issue 1, 103001 (2018)
Su Rongtao*, Zhou Pu, Zhang Pengfei, Wang Xiaolin, Ma Yanxing, and Ma Pengfei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201847.0103001 Cite this Article
    Su Rongtao, Zhou Pu, Zhang Pengfei, Wang Xiaolin, Ma Yanxing, Ma Pengfei. Review on the progress in coherent beam combining of ultra-short fiber lasers(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 103001 Copy Citation Text show less
    References

    [1] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nat Photonics, 2013, 7(11): 868-874.

    [2] Manke G C. Ultrashort pulsed laser technology development program[C]//SPIE, 2014, 9251: 92510O.

    [3] Li Ruxin, Leng Yuxin, Xu Zhizhan. Progress in superintense ultrafast lasers and their applications[J]. Physics, 2015, 44(8): 509-517. (in Chinese)

    [4] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Sci Engng, 2015, 3(e3): 1-14.

    [5] Li Hongxun, Zhang Rui. Progress of fiber amplification network and its application[J]. Laser & Optoelectronics Progress, 2017, 54(1): 11-22. (in Chinese)

    [6] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nat Photonics, 2013, 7(11): 861-867.

    [7] Wan P, Yang L, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Opt Express, 2013, 21(24): 29854-29859.

    [8] Hadrich S, Demmler S, Rothhardt J, et al. High-repetition-rate sub-5-fs pulses with 12 GW peak power from fiber-amplifier-pumped optical parametric chirped-pulse amplification[J]. Opt Lett, 2011, 36(3): 313-315.

    [9] Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Opt Express, 2011, 19(1): 255-260.

    [10] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Opt Commun, 1985, 55(6): 447-449.

    [11] Chang W, Zhou T, Siiman L A, et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Opt Express, 2013, 21(3): 3897-3910.

    [12] Liu Zejin, Zhou Pu, Wang Xiaolin, et al. The history, development and tend of coherent combining of laser beams[J]. Chin J Laser, 2010, 37(9): 2221-2234. (in Chinese)

    [13] Cheng Yong, Liu Yang, Xu Lixin. Recent progress and development of fiber combining technology[J]. Infrared and Laser Engineering, 2007, 36(2): 163-166. (in Chinese)

    [14] Lou Qihong, He Bin, Zhou Jun. Fiber lasers and it′s coherent beam combination[J]. Infrared and Laser Engineering, 2007, 36(2): 155-159. (in Chinese)

    [15] Su Rongtao, Wang Xiaolin, Zhou Pu, et al. Resent research and development of beam combination of high power pulse fiber laser[J]. Laser & Optoelectronics Progress, 2011, 48(10): 101401. (in Chinese)

    [16] Yu Hailong, Wang Xiaolin, Su Rongtao, et al. Advances in high power femtosecond fiber laser systems[J]. Laser & Optoelectronics Progress, 2016, 53(5): 67-85. (in Chinese)

    [17] Wang Xiaolin, Zhou Pu, Xu Xiaojun, et al. Techniques of the coherent beam combination of pulse fiber lasers[J]. Laser & Optoelectronics Progress, 2009, 46(5): 13-23. (in Chinese)

    [18] Hanna M, Guichard F, Zaouter Y, et al. Coherent combination of ultrafast fiber amplifiers[J]. J Phys B: at Mol Opt Phys, 2016, 49(6): 062004.

    [19] Sprangle P, Ting A, Penano J, et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications[J]. IEEE J Sel Top Quantum Electron, 2009, 45(2): 138-148.

    [20] Geng C, Zhao B, Zhang E, et al. 1.5 kW incoherent beam combining of four fiber lasers using adaptive fiber-optics collimators[J]. IEEE Photon Technol Lett, 2013, 25(13): 1286-1289.

    [21] Zuitlin R, Shamir Y, Sintov Y, et al. Modeling the evolution of spatial beam parameters in parabolic index fibers[J]. Opt Lett, 2012, 37(17): 3636-3638.

    [22] Shamir Y, Zuitlin R, Sintov Y, et al. Spatial beam properties of combined lasers′ delivery fibers[J]. Opt Lett, 2012, 37(9): 1412-1414.

    [23] Zheng Y, Yang Y, Wang J, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Opt Express, 2016, 24(11): 12063-12071.

    [24] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//SPIE, 2016, 9730: 97300Y.

    [25] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chin J Laser, 2016, 43(9): 55-61. (in Chinese)

    [26] Xu J, Gao H, Peng Q, et al. High-efficient beam combining of polarized high power lasers by time multiplexing technique[J]. IEEE Photon Technol Lett, 2014, 26(3): 261-263.

    [27] Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chin J Laser, 2017, 44(2): 0201001. (in Chinese)

    [28] Manzoni C, Mücke O D, Cirmi G, et al. Coherent pulse synthesis: towards sub-cycle optical waveforms[J]. Laser Photonics Rev, 2015, 9(2): 129-171.

    [29] Shelton R K, Ma L, Kapteyn H C, et al. Phase-coherent optical pulse synthesis from separate femtosecond lasers[J]. Science, 2001, 293(5533): 1286-1289.

    [30] Zhou P, Liu Z, Xu X, et al. Numerical analysis of the effects of aberrations on coherently combined fiber laser beams[J]. Appl Opt, 2008, 47(18): 3350-3359.

    [31] Goodno G D, Shih C, Rothenberg J E. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Opt Express, 2010, 18(24): 25403-25414.

    [32] Geng C, Luo W, Tan Y, et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control[J]. Opt Express, 2013, 21(21): 25045-25055.

    [33] Weyrauch T, Vorontsov M, Ovchinnikov V, et al. Atmospheric turbulence compensation and coherent beam combining over a 7 km propagation path using a fiber-array system with 21 sub-apertures[C]//Imaging and Applied Optics, 2014: PW2E.3.

    [34] Zhi D, Ma P, Ma Y, et al. Novel adaptive fiber-optics collimator for coherent beam combination[J]. Opt Express, 2014, 22(25): 31520-31528.

    [35] Su R, Zhou P, Ma Y, et al. 1.2 kW average power from coherently combined single-frequency nanosecond all-fiber amplifier array[J]. Appl Phys Express, 2013, 6(12): 122702.

    [36] Fan X, Liu J, Liu J, et al. Coherent combining of a seven-element hexagonal fiber array[J]. Opt Laser Technol, 2010, 42(2): 274-279.

    [37] Brosnan S J, Wichham M G, Komine H. Method and apparatus for optimizing the target intensity distribution transmitted from a fiber coupled array: US Patent, 7283702[P]. 2007-10-16.

    [38] Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Opt Express, 2011, 19(18): 17053-17058.

    [39] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Opt Lett, 2011, 36(14): 2686-2688.

    [40] Su R, Zhou P, Wang X, et al. Actively coherent beam combining of two single-frequency 1 083 nm nanosecond fiber amplifiers in low-repetition-rate[J]. IEEE Photon Technol Lett, 2013, 25(15): 1485-1487.

    [41] Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Opt Express, 2010, 18(13): 13547-13553.

    [42] Yang B, Wang X, Ma P, et al. Passive coherent beam combining four channels of nanosecond pulsed laser using all-fiber feedback loop[J]. Chin Phys Lett, 2014, 31(11): 114210.

    [43] Ma P F, Zhou P, Su R T, et al. Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique[J]. Laser Phys Lett, 2012, 9(6): 456-458.

    [44] Yang Y, Liu H, Zheng Y, et al. Dammann-grating-based passive phase locking by an all-optical feedback loop[J]. Opt Lett, 2014, 39(3): 708-710.

    [46] Müller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Opt Lett, 2016, 41(15): 3439-3442.

    [47] Thielen P A, Ho J G, Burchman D A, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Opt Lett, 2012, 37(18): 3741-3743.

    [48] Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//SPIE, 2016, 9728: 97281Y.

    [49] Su Rongtao, Zhou Pu, Wang Xiaolin, et al. Influence of temporal error with different pulse shapes on coherent beam combination system[J]. Acta Phys Sin, 2012, 61(8): 206-211. (in Chinese)

    [50] Yu H L, Ma P F, Wang X L, et al. Influence of temporal-spectral effects on ultrafast fiber coherent polarization beam combining system[J]. Laser Phys Lett, 2015, 12(10): 105301.

    [51] Su R, Zhou P, Wang X, et al. Impact of temporal and spectral aberrations on coherent beam combination of nanosecond fiber lasers[J]. Appl Opt, 2013, 52(10): 2187-2193.

    [52] Klenke A, Seise E, Limpert J, et al. Basic considerations on coherent combining of ultrashort laser pulses[J]. Opt Express, 2011, 19(25): 25379-25387.

    [53] Su R, Zhou P, Wang X, et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers[J]. Opt Lett, 2012, 37(4): 497-499.

    [54] Su Rongtao, Zhou Pu, Ma Yanxing, et al. Coherent beam combining of two nanosecond fiber pulse lasers[J]. Chinese J Laser, 2012, 39(1): 0102004. (in Chinese)

    [55] Yu Hailong. Study on high power femtosecond fiber lasers and their coherent beam combining technology[D]. Changsha: National University of Defense Technology, 2016. (in Chinese)

    [56] Weiss S B, Weber M E, Goodno G D. Group delay locking of coherently combined broadband lasers[J]. Opt Lett, 2012, 37(4): 455-457.

    [57] Bochove E J, Shakir S A. Analysis of a spatial-filtering passive fiber laser beam combining system[J]. IEEE J Sel Top Quantum Electron, 2009, 15(2): 320-327.

    [58] He B, Lou Q, Wang W, et al. Experimental demonstration of phase locking of a two-dimensional fiber laser array using a self-imaging resonator[J]. Appl Phys Lett, 2008, 92(25): 251115.

    [59] Li J, Duan K, Wang Y, et al. High-power coherent beam combining of two photonic crystal fiber lasers[J]. IEEE Photon Technol Lett, 2008, 20(11): 888-890.

    [60] Huo Y, Cheo P. Analysis of transverse mode competition and selection in multicore fiber lasers[J]. J Opt Soc Am B, 2005, 22(11): 2345-2349.

    [61] Michaille L, Bennett C R, Taylor D M, et al. Multicore photonic crystal fiber lasers for high power/energy applications[J]. IEEE J Sel Top Quantum Electron, 2009, 15(2): 328-336.

    [62] Chen Z, Hou J, Zhou P, et al. Passive phase locking of an array of four fiber lasers by mutual injection locking[J]. Opt Laser Technol, 2009, 15(4): 333-336.

    [63] Fabiny L, Colet P, Poy R. Coherence and phase dynamics of spatially coupled solid-state lasers[J]. Phys Rev A, 1993, 47(5): 4287-4296.

    [64] Shardlow P C, Damzen M J. Phase conjugate self-organized coherent beam combination: a passive technique for laser power scaling[J]. Opt Lett, 2010, 35(7): 1082-1084.

    [65] Steinhausser B, Brignon A, Lallier E, et al. High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup[J]. Opt Express, 2007, 15(10): 6464-6469.

    [66] Kong H J, Yoon J W, Shin J S, et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors[J]. Appl Phys Lett, 2008, 92(2): 021120.

    [67] Zhou Jun, He Bing, Xue Yuhao, et al. Study on passive coherent beam combination technology of high power fiber laser arrays[J]. Acta Optica Sinica, 2011, 31(9): 251-259. (in Chinese)

    [68] Eckhouse V, Ishaaya A A, Shimshi L, et al. Intracavity coherent addition of 16 laser distributions[J]. Opt Lett, 2006, 31(3): 350-352.

    [69] Wang X, Zhou P, Ma H, et al. Synchronization and coherent combining of two pulsed fiber ring lasers based on direct phase modulation[J]. Chin Phys Lett, 2009, 26(5): 054212.

    [70] Zhou P, Wang X, Chen Z, et al. Coherent combining of two pulsed fibre lasers in phase modulated mutually coupled fibre laser array[J]. Electron Lett, 2008, 44(21): 20082057.

    [71] Zhang C, Chang W, Galvanauskas A, et al. Simultaneous passive coherent beam combining and mode locking of fiber laser arrays[J]. Opt Express, 2012, 20(15): 16245-16257.

    [72] Kambayashi Y, Yoshida M, Sasaki T, et al. All-fiber phase-control-free coherent-beam combining toward femtosecond-pulse amplification[J]. Opt Commun, 2017, 382: 556-558.

    [73] Kong F, Liu L, Sanders C, et al. Phase locking of nanosecond pulses in a passively Q-switched two-element finer laser array[J]. Appl Phys Lett, 2007, 90(15): 151110.

    [74] Michaille L, Taylor D M, Bennett C R, et al. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area[J]. Opt Lett, 2008, 33(1): 71-73.

    [75] Huo Y, Cheo P, King G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier[J]. Opt Express, 2004, 12(25): 6230-6239.

    [76] Liu H, He B, Zhou J, et al. Coherent beam combination of two nanosecond fiber amplifiers by an all-optical feedback loop[J]. Opt Lett, 2012, 37(18): 3885-3887.

    [77] Ji Xiang, Zhou Pu, Wang Xiaolin, et al. Polarized beam coherent combination of pulsed fiber[J]. Acta Phys Sin, 2012, 61(24): 244201. (in Chinese)

    [78] Daniault L, Hanna M, Papadopoulos D, et al. Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Opt Lett, 2011, 36(20): 4023-4025.

    [79] Zaouter Y, Daniault L, Hanna M, et al. Passive coherent combination of two ultrafast rod type fiber chirped pulse amplifiers[J]. Opt Lett, 2012, 37(9): 1460-1462.

    [80] Su R, Zhang Z, Zhou P, et al. Coherent beam combining of a fiber lasers array based on cascaded phase control[J]. IEEE Photon Technol Lett, 2016, 28(22): 2585-2588.

    [81] Redmond S M. Active coherent combination of >200 semiconductor amplifiers using a SPGD algorithm[C]// Conference on Lasers and Electro-Optics, 2011: CTuV1.

    [82] Su Rongtao, Zhou Pu, Wang Xiaolin, et al. Phase locking of a coherent array of 32 fiber laser[J]. High Power Laser and Particle Beams, 2014, 26(11): 10101. (in Chinese)

    [83] Wang X, Leng J, Zhou P, et al. 1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array[J]. Appl Phys B, 2012, 107(3): 785-790.

    [84] Wang X, Zhou P, Ma Y, et al. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm[J]. Opt Lett, 2011, 36(16): 3121-3123.

    [85] Su R, Zhou P, Wang X, et al. Active coherent beam combining of a five-element, 800 watt nanosecond fiber amplifier array[J]. Opt Lett, 2012, 37(19): 3978-3980.

    [86] Hou Jing, Xiao Rui, Liu Zejin, et al. Two methods to realize phase controlling of ytterbium fiber amplifiers[J]. High Power Laser and Particle Beams, 2006, 18(11): 1779-1782. (in Chinese)

    [87] Zhou Pu, Ma Yanxing, Wang Xiaolin, et al. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(5): 973-977. (in Chinese)

    [88] Flores A, Shay T M, Lu C A, et al. Coherent beam combining of fiber amplifiers in a kW regime[C]//Conference on Lasers and Electro-Optics, 2011: CFE3.

    [89] Siiman L A, Chang W, Zhou T, et al. Coherent femtosecond pulse combining of multiple parallel chirped pulse fiber amplifiers[J]. Opt Express, 2012, 20(16): 18097-18116.

    [90] Huang Z, Tang X, Luo Y, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. Rev Sci Instrum, 2016, 87: 033109.

    [92] Ma Y, Wang X, Leng J, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Opt Lett, 2011, 36(6): 951-953.

    [93] Ma P, Tao R, Wang X, et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime[J]. Opt Express, 2014, 22(4): 4123-4130.

    [94] Shay T M, Benham V, Baker J T, et al. First experimental demonstration of self-synchronous phase locking of an optical array[J]. Opt Express, 2006, 14(25): 12015-12021.

    [95] Ma Y, Zhou P, Wang X, et al. Coherent beam combination with single frequency dithering technique[J]. Opt Lett, 2010, 35(9): 1308-1310.

    [96] Ma Y, Zhou P, Wang X, et al. Active phase locking of fiber amplifiers using sine-cosine single-frequency dithering technique[J]. Appl Opt, 2011, 50(19): 3330-3336.

    [97] Azarian A, Bourdon P, Lombard L, et al. Orthogonal coding methods for increasing the number of multiplexed channels in coherent beam combining[J]. Appl Opt, 2014, 53(8): 1493-1502.

    [98] Jiang M, Su R, Zhang Z, et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique[J]. Appl Opt, 2017, 56(15): 4255-4260.

    [99] Kansky J E, Yu C X, Murphy D V, et al. Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count[C]//SPIE, 2006, 6306: 63060G.

    [100] McNaught S J, Asman C P, Injeyan H, et al. 100-kW coherently combined Nd:YAG MOPA laser array[C]// Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics\& Photonics Technical Digest, 2009: FThD2.

    [101] Fan X, Liu J, Liu J, et al. Experimental investigation of a seven-element hexagonal fiber coherent array[J]. Chin Opt Lett, 2010, 8(1): 48-51.

    [102] Xiao R, Hou J, Liu M, et al. Coherent combining technology of master oscillator power amplifier fiber arrays[J]. Opt Express, 2008, 16(3): 2015-2022.

    [103] Su Rongtao, Zhou Pu, Wang Xiaolin, et al. High-speed high-precision phase controller for coherent beam combining of fiber lasers[J]. High Power Laser and Particle Beams, 2012, 24(6): 1290-1294. (in Chinese)

    [104] Su R, Zhou P, Wang X, et al. High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination [Invited][J]. IEEE J Sel Top Quantum Electron, 2014, 20(5): 0903913.

    [105] Cui Y, Gao Y, Zhao Z, et al. Spectral phase effects and control requirements of coherent beam combining for ultrashort ultrahigh intensity laser systems[J]. Appl Opt, 2016, 55(35): 10124-10132.

    [106] Seise E, Klenke A, Limpert J, et al. Coherent addition of fiber-amplified ultrashort laser pulses[J]. Opt Express, 2010, 18(26): 27827-27835.

    [107] Daniault L, Hanna M, Lombard L, et al. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Opt Lett, 2011, 36(5): 621-623.

    [108] Klenke A, Seise E, Demmler S, et al. Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy[J]. Opt Express, 2011, 19(24): 24280-24285.

    [109] Klenke A, Breitkopf S, Kienel M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplificatio system[J]. Opt Lett, 2013, 38(13): 2283-2285.

    [110] Yang K, Li W, Shen X, et al. Parallel fiber amplifiers with carrier-envelope drift control for coherent combination of optical frequency combs[J]. Laser Physics, 2014, 24(12): 125101.

    [111] Klenke A, Hadrich S, Eidam T, et al. 22 GW peak-power fiber chirped-pulse-amplification system[J]. Opt Lett, 2014, 39(24): 6875-6878.

    [112] Ramirez L P, Hanna M, Bouwmans G E R, et al. Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier[J]. Opt Express, 2015, 23(5): 5406-5416.

    [113] Mu J, Li Z, Jing F, et al. Coherent combination of femtosecond pulses via non-collinear cross-correlation and far-field distribution[J]. Opt Lett, 2016, 41(2): 234-237.

    [114] Guichard F, Hanna M, Zaouter Y, et al. Analysis of limitations in divided-pulse nonlinear compression and amplification[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5): 619-623.

    [115] Kienel M, Klenke A, Eidam T, et al. Analysis of passively combined divided-pulse amplification as an energy-scaling concept[J]. Opt Express, 2013, 21(23): 29031-29042.

    [116] Guichard F, Lavenu L, Hanna M, et al. Coherent combining efficiency in strongly saturated divided-pulse amplification systems[J]. Opt Express, 2016, 24(22): 25329-25336.

    [117] Zhou S, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Opt Lett, 2007, 32(7): 871-873.

    [118] Lesparre F, Gomes J T, Délen X, et al. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Opt Lett, 2016, 41(7): 1628-1631.

    [119] Stark H, Müller M, Kienel M, et al. Electro-optically controlled divided-pulse amplification[J]. Opt Express, 2017, 25(12): 13494-13503.

    [120] Guichard F, Zaouter Y, Hanna M, et al. Energy scaling of a nonlinear compression setup using passive coherent combining[J]. Opt Lett, 2013, 38(21): 4437-4440.

    [121] Guichard F, Zaouter Y, Hanna M, et al. High-energy chirped-and divided-pulse Sagnac femtosecond fiber amplifier[J]. Opt Lett, 2015, 40(1): 89-92.

    [122] Daniault L, Hanna M, Papadopoulos D N, et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining[J]. Opt Express, 2012, 20(19): 21627-21634.

    [123] Mueller M, Kienel M, Klenke A, et al. Phase stabilization of spatiotemporally multiplexed ultrafast amplifiers[J]. Opt Express, 2016, 24(8): 7893-7904.

    [124] Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Opt Lett, 2016, 41(14): 3343-3346.

    [125] Eidam T, Klenke A, Kienel M, et al. System design for joule-class femtosecond fiber amplifiers for particle acceleration[C]//Conference on Lasers and Electro-Optics, 2014: JTh4L.5.

    [126] Kienel M, Müller M, Klenke A, et al. Multidimensional coherent pulse addition of ultrashort laser pulses[J]. Opt Lett, 2015, 40(4): 522-525.

    [127] Limpert J, Klenke A, Kienel M, et al. Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5): 1-10.

    [128] Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Opt Lett, 2012, 37(2): 253-255.

    [129] Zaouter Y, Guichard F, Daniault L, et al. Femtosecond fiber chirped-and divided-pulse amplification system[J]. Opt Lett, 2013, 38(2): 106-108.

    [130] Kienel M, Klenke A, Eidam T, et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification[J]. Opt Lett, 2014, 39(4): 1049-1052.

    [131] Webb B, Azim A, Bodnar N, et al. Divided-pulse amplification to the joule level[J]. Opt Lett, 2016, 41(13): 3106-3109.

    [132] Pouysegur J, Weichelt B, Guichard F, et al. Simple Yb:YAG femtosecond booster amplifier using divided-pulse amplification[J]. Opt Express, 2016, 24(9): 9896-9904.

    [133] Polzik E S, Kimble H J. Frequency doubling with KNbO3 in an external cavity[J]. Opt Lett, 1991, 16(18): 1400-1402.

    [134] Zimmermann C, Vuletic V, Hemmerich A, et al. All solid state laser source for tunable blue and ultraviolet radiation[J]. Appl Phys Lett, 1995, 66(18): 2318-2320.

    [135] Han Hainian, Zhang Jinwei, Zhang Qing, et al. Theoretical and experimental study on femtosecond enhancement resonator[J]. Acta Phys Sin, 2012, 61(16): 164206-164206. (in Chinese)

    [136] Potma E O, Evans C, Xie X S, et al. Picosecond-pulse amplification with an external passive optical cavity[J]. Opt Lett, 2003, 28(19): 1835-1837.

    [137] Jones R J, Moll K D, Thorpe M J, et al. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity[J]. Phys Rev Lett, 2005, 94: 193201.

    [138] Pupeza I, Holzberger S, Eidam T, et al. Compact high-repetition-rate source of coherent 100 eV radiation[J]. Nat Photonics, 2013, 7(8): 608-612.

    [139] Zhou T, Ruppe J, Zhu C, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Opt Express, 2015, 23(6): 7442-7462.

    [140] Astrauskas I, Kaksis E, Flary T, et al. High-energy pulse stacking via regenerative pulse-burst amplification[J]. Opt Lett, 2017, 42(11): 2201-2204.

    [141] Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light Sci Appl, 2014, 2(10): e211.

    [142] Ruppe J, Chen S, Sheikhsofla M, et al. Multiplexed coherent pulse stacking of 27 Pulses in a 4+1 GTI resonator sequence[C]//Lasers Congress 2016 (ASSL, LSC, LAC), 2016: AM4A.6.

    [143] Yang Y, Byrd J, Dawson J, et al. Multicavity coherent pulse stacking using herriott cells[C]//North American Particle Accelerator Conf, 2016: 370-372.

    [144] Limpert J. Coherent temporal pulse-stacking approaches for peak-power scaling of ultrafast laser systems[C]//High-Brightness Sources and Light-Driven Interactions, 2016: HM8B.1.

    [145] Pei H, Ruppe J, Chen S, et al. Multi-mJ ultrashort pulse coherent pulse stacking amplification in a Yb-doped 85 μm CCC fiber based system[C]//Conference on Lasers and Electro-Optics, 2017: SM1L.2.

    [146] Klenke A, Drich S H A, Kienel M, et al. Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression[J]. Opt Lett, 2014, 39(12): 3520-3522.

    [147] Drich S H A, Klenke A, Hoffmann A, et al. Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power[J]. Opt Lett, 2013, 38(19): 3866-3869.

    [148] Wirth A, Hassan M T, Grgura S I, et al. Synthesized light transients[J]. Science, 2011, 334(6053): 195-200.

    [149] Yavuz D D. Toward synthesis of arbitrary optical waveforms[J]. Science, 2011, 331(6021): 1142-1143.

    [150] Schibli T R, Kim J, Kuzucu O, et al. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation[J]. Opt Lett, 2003, 28(11): 947-949.

    [151] Tian H, Song Y, Meng F, et al. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers[J]. Opt Lett, 2016, 41(22): 5142-5145.

    [152] Cox J A, Putnam W P, Sell A, et al. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback[J]. Opt Lett, 2012, 37(17): 3579-3581.

    [153] Song Y, Kim C, Jung K, et al. Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime[J]. Opt Express, 2011, 19(15): 14518-14525.

    [154] Krauss G, Lohss S, Hanke T, et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology[J]. Nat Photonics, 2010, 4(1): 33-36.

    [155] Huang S, Cirmi G, Moses J, et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics[J]. Nat Photonics, 2011, 5(8): 475-479.

    [156] Chia S, Cirmi G, Fang S, et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers[J]. Optica, 2014, 1(5): 315-322.

    [157] Rigaud P, Kermene V, Bouwmans G, et al. Spatially dispersive amplification in a 12-core fiber and femtosecond pulse synthesis by coherent spectral combining[J]. Opt Express, 2013, 21(11): 13555-13563.

    [158] Shverdin M Y, Walker D R, Yavuz D D, et al. Generation of a single-cycle optical pulse[J]. Phys Rev Lett, 2005, 94(3): 033904.

    [159] Chan H, Hsieh Z, Liang W, et al. Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics[J]. Science, 2011, 331(6021): 1165-1168.

    [160] Guichard F, Hanna M, Lombard L, et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Opt Lett, 2013, 38(24): 5430-5433.

    [161] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nat Photonics, 2013, 7(4): 258-261.

    [162] Bychenkov V Y, Brantov A V. Laser-based ion sources for medical applications[J]. Eur Phys J Special Topics, 2015, 224(13): 2621-2624.

    [163] Gales S. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition rate Laser beams[J]. Eur Phys J Special Topics, 2015, 224(13): 2631-2637.

    [164] Moustaizis S D, Lalousis P, Perrakis K, et al. ICAN: high power neutral beam generation[J]. Eur Phys J Special Topics, 2015, 224(13): 2639-2643.

    [165] Roth M, Logan B. Advanced space power and propulsion based on lasers[J]. Eur Phys J Special Topics, 2015, 224(13): 2657-2663.

    [166] Quinn M N, Jukna V, Ebisuzaki T, et al. Space-based application of the CAN laser to LIDAR and orbital debris remediation[J]. Eur Phys J Special Topics, 2015, 224(13): 2645-2655.

    CLP Journals

    [1] Tao Wang, Can Li, Yang Liu, Bo Ren, Zhenqiang Tang, Hongxiang Chang, Gehui Xie, Kun Guo, Jian Wu, Jiangming Xu, Jinyong Leng, Pengfei Ma, Rongtao Su, Wenxue Li, Pu Zhou. Coherent polarization beam combination of two ultrafast laser channels based on fiber stretcher phase locking[J]. Infrared and Laser Engineering, 2023, 52(6): 20220869

    [2] Zhou Pu, Su Rongtao, Huang Liangjin, Li Jun. Research progress and future perspective on ultrafast fiber laser enabled by computing technique (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803001

    Su Rongtao, Zhou Pu, Zhang Pengfei, Wang Xiaolin, Ma Yanxing, Ma Pengfei. Review on the progress in coherent beam combining of ultra-short fiber lasers(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 103001
    Download Citation